Skip to main content
Log in

A Novel Formulation for MHD Slip Flow of Elastico-Viscous Fluid Induced by Peristaltic Waves with Heat/Mass Transfer Effects

  • Research Article-Mechanical Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Prime motive of this research is to formulate and analyze the elastico-viscous fluid flow triggered by sinusoidal waves progressing across the walls of symmetric channel. The research is based on the Walters-B model that depicts normal stress effects attributed to the fluid elasticity. Here, we endeavor to derive correct form of equations representing peristalsis of Walters-B liquid. The said model is investigated by employing generic Robin-type boundary conditions signifying partial slip effects. The case of hydrodynamic flow has been separately analyzed. Series expansions are considered about a parameter \(\delta\), measuring the ratio of wavelength of peristaltic wave to the channel width. Emphasis is paid to the influence of new attributes of the problem, namely viscoelasticity and wall slip on the pressure rise, axial flow, temperature and concentration of species. Heat transfer coefficient is computed graphically across the channel wall for a variety of controlling flow parameters. Even at small Reynolds number, a marked axial velocity is predicted, provided that elastico-viscous fluid parameter is sufficiently large. Moreover, heat transfer rate at channel walls is lowered due to the inclusion of viscoelasticity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Latham, T.W.: Fluid Motion in Peristaltic Pump (MS Thesis), Cambridge (1966)

  2. Burns, J.C.; Parkes, T.: Peristaltic motion. J. Fluid Mech. 29, 731–743 (1967)

    Article  Google Scholar 

  3. Fung, Y.C.; Yih, C.S.: Peristaltic transport. J. Appl. Mech. 35, 669–675 (1968)

    Article  Google Scholar 

  4. Yin, F.; Fung, Y.C.: Peristaltic waves in circular cylindrical tubes. J. Appl. Mech. 36, 579–687 (1969)

    Article  Google Scholar 

  5. Jaffrin, M.Y.; Shapiro, A.H.: Peristaltic pumping. Ann. Rev. Fluid Mech. 3, 13–36 (1971)

    Article  Google Scholar 

  6. Vajravelu, K.; Sreenadh, S.; Rajanikanth, K.; Lee, C.: Peristaltic transport of a Williamson fluid in asymmetric channels with permeable walls. Nonlinear Anal.: Real World Appl. 13, 2804–2822 (2012)

    Article  MathSciNet  Google Scholar 

  7. Javed, M.; Hayat, T.; Alsaedi, A.: Peristaltic flow of Burgers’ fluid with compliant walls and heat transfer. Appl. Math. Comput. 244, 654–671 (2014)

    MathSciNet  MATH  Google Scholar 

  8. Hina, S.; Mustafa, M.; Hayat, T.; Alotaibi, N.D.: On peristaltic motion of pseudoplastic fluid in a curved channel with heat/mass transfer and wall properties. Appl. Math. Comput. 263, 378–391 (2015)

    MathSciNet  MATH  Google Scholar 

  9. Abbasi, F.M.; Hayat, T.; Alsaedi, A.: Numerical analysis for MHD peristaltic transport of Carreau-Yasuda fluid in a curved channel with Hall effects. J. Magn. Magn. Mat. 382, 104–110 (2015)

    Article  Google Scholar 

  10. Kothandapani, M.; Prakash, J.; Srinivas, S.: Peristaltic transport of a MHD Carreau fluid in a tapered asymmetric channel with permeable walls. Int. J. Biomath. (2015). https://doi.org/10.1142/s1793524515500540

    Article  MathSciNet  MATH  Google Scholar 

  11. Khabazi, N.P.; Taghavi, S.M.; Sadeghy, K.: Peristaltic flow of Bingham fluids at large Reynolds numbers: a numerical study. J. Non Newton. Fluid Mech. 227, 20–34 (2016)

    Article  MathSciNet  Google Scholar 

  12. Khan, A.; Farooq, A.; Vafai, K.: Impact of induced magnetic field on synovial fluid with peristaltic flow in an asymmetric channel. J. Magn. Magn. Mater. 446, 54–67 (2018)

    Article  Google Scholar 

  13. Kothandapani, M.; Pushparaj, V.; Prakash, J.: Effect of magnetic field on peristaltic flow of a fourth grade fluid in a tapered asymmetric channel. J. King Saud Univ. Eng. Sci. 30, 86–95 (2018)

    Google Scholar 

  14. Hina, S.; Yasin, M.: Slip effects on peristaltic flow of magnetohydrodynamics second grade fluid through a flexible channel with heat/mass transfer. J. Therm. Sci. Eng. Appl. 10, Article ID: 051002 (2018)

  15. Yasmeen, S.; Asghar, S.; Anjum, H.J.; Ehsan, T.: Analysis of Hartmann boundary layer peristaltic flow of Jeffrey fluid: quantitative and qualitative approaches. Commun. Nonlinear Sci. Numer. Simul. 76, 51–65 (2019)

    Article  MathSciNet  Google Scholar 

  16. Sobhani, S.M.J.; Khabazi, N.P.; Bazargan, S.; Sadeghy, P.; Sadeghy, K.: Peristaltic transport of thixotropic fluids: a numerical simulation. Korea Aust. Rheol. J. 31, 71–79 (2019)

    Article  Google Scholar 

  17. Walters, K.: Second-order effects in elasticity, plasticity and fluid dynamics. Pergamon, Oxford (1964)

    Google Scholar 

  18. Mehmood, O.U.; Shafie, S.; Mustapha, N.: Peristaltic transport of Walters-B fluid in an asymmetric channel. Int. J. Appl. Math. Mech. 7, 1–19 (2011)

    Google Scholar 

  19. Nadeem, S.; Akbar, N.S.; Hayat, T.; Hendi, A.A.: Peristaltic transport of Walters-B fluid in endoscope. Appl. Math. Mech. 32, 689–700 (2011)

    Article  Google Scholar 

  20. Javed, M.; Hayat, T.; Mustafa, M.; Ahmad, B.: Velocity and thermal slip effects on peristaltic motion of Walter’s B fluid. Int. J. Heat Mass Trans. 96, 210–217 (2016)

    Article  Google Scholar 

  21. Ramesh, K.; Devakar, M.: Peristaltic transport of MHD Walter’s B fluid through porous medium with heat transfer. Iran. J. Sci. Tech. Trans. A: Sci. 41, 489–504 (2017)

    Article  Google Scholar 

  22. Makinde, O.D.; Reddy, M.G.; Reddy, K.V.: Effects of thermal radiation on MHD peristaltic motion of Walter’s B fluid with heat source and slip conditions. J. Appl. Fluid Mech. 10, 1105–1112 (2017)

    Article  Google Scholar 

  23. Baris, S.: Steady three dimensional flow of Walter’s B’ fluid in a vertical channel. Turk. J. Eng. Environ. Sci. 26, 385–394 (2002)

    Google Scholar 

  24. Tonekaboni, S.A.M.; Akbar, R.; Khoeilar, R.: On the study of viscoelastic Walters’ B fluid in boundary layer flows. Math. Prob. Eng. 2012 Article ID: 861508 (2012)

  25. Devaki, P.; Venkateswarlu, B.; Srinivas, S.; Sreenadh, S.: MHD peristaltic flow of a nanofluid in a constricted artery for different shapes of nanosized particles. Nonlinear Eng. 9, 51–59 (2020)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Meraj Mustafa.

Appendix

Appendix

Here, we provide expressions of the coefficients appearing in the solutions (given in Sect. 3):

$$C_{2} = \frac{{F_{0} }}{2\eta } - \frac{1}{{2\eta^{2} }}\left( {\frac{{\left( {2\eta + F_{0} } \right)\sinh M\eta }}{{ - M\cosh M\eta + \sinh M\eta \left( {\frac{1}{\eta } - \beta_{1} M^{2} } \right)}}} \right),$$
$$C_{4} = \frac{1}{2\eta }\left( {\frac{{2\eta + F_{0} }}{{ - M\cosh M\eta + \sinh M\eta \left( {\frac{1}{\eta } - \beta_{1} M^{2} } \right)}}} \right),$$
$$D_{1} = \frac{1}{2} - \frac{{{\text{Br}}M^{4} C_{4}^{2} \eta }}{4}\left( {\frac{\eta }{2} + \beta_{2} } \right) + \frac{{{\text{Br}}M^{2} C_{4}^{2} }}{4}\left( {\frac{1}{2}\cosh 2M\eta + \beta_{2} M\sinh 2M\eta } \right),$$
$$E_{1} = \frac{1}{2} + \frac{{ {\text{SrBr}}M^{4} C_{4}^{2} \eta }}{8}\left( {\frac{\eta }{2} + \beta_{3} } \right) - \frac{{ {\text{SrBr}}M^{2} C_{4}^{2} }}{4}\left( {\frac{1}{2}\cosh 2M\eta + \beta_{3} M\sinh 2M\eta } \right),$$
$$\begin{aligned} & E_{2} = \frac{1}{{2\left( {\eta + \beta_{3} } \right)}},\,l_{1} = M^{2} C_{2} C_{4x} \left( {\text{Re} + kM^{2} } \right),\, \\ & l_{2} = - M^{3} C_{2x} C_{4} \left( {\text{Re} + kM^{2} } \right),\, D_{2} = \frac{1}{{2\left( {\eta + \beta_{2} } \right)}}, \\ \end{aligned}$$
$$A_{2} = \frac{{F_{1} }}{2\eta } - \frac{{A_{4} }}{\eta }\sinh M\eta - \frac{{l_{2} }}{{4M^{3} }}\eta \sinh M\eta - \cosh M\eta \left( {\frac{{l_{1} }}{{2M^{3} }} - \frac{{5l_{2} }}{{4M^{4} }}} \right),$$
$$\begin{aligned} & A_{4} = \frac{1}{{2M\cosh M\eta + \sinh M\eta \left( {2\beta_{1} M^{2} - \frac{2}{\eta }} \right)}} \\ & \left[ { - \frac{{F_{1} }}{\eta } + \eta \sinh M\eta \left( {\frac{{2l_{2} }}{{M^{3} }} - \frac{{l_{1} }}{{M^{2} }}} \right) - \frac{{l_{2} \eta^{2} }}{{2M^{2} }}\cosh M\eta } \right. \\ & \quad - \beta_{1} \left\{ {\eta \cosh M\eta \left( {\frac{{l_{1} }}{M} - \frac{{l_{2} }}{{2M^{2} }} + 2kM^{3} C_{2x} C_{4} } \right)} \right. \\ & \quad + \sinh M\eta \left( {\frac{{2l_{1} }}{{M^{2} }} + \frac{{l_{2} \eta^{2} }}{2M} - \frac{{4l_{2} }}{{M^{3} }} - 4kM^{2} C_{2x} C_{4} - 2kM^{2} C_{2} C_{4x} } \right) \\ & \quad \left. {\left. { - \,4kM^{3} C_{4x} C_{4} \cosh M\eta \sinh M\eta } \right\}} \right], \\ \end{aligned}$$
$$p_{1} = \Pr \text{Re} C_{2} D_{1x} , p_{2} = \Pr \text{Re} \left( {C_{2} D_{2x} - C_{2x} D_{2} } \right), p_{3} = \frac{{\Pr \text{Re} {\text{Br}}C_{4} M^{4} }}{4}\left( {C_{2} C_{4x} - C_{4} C_{2x} } \right),$$
$$p_{4} = \Pr \text{Re} MC_{4} D_{1x} , p_{5} = \Pr \text{Re} MC_{4} D_{2x} , p_{6} = \frac{{\Pr \text{Re} {\text{Br}}M^{5} C_{4}^{2} C_{4x} }}{4},$$
$$p_{7} = - \frac{{\Pr \text{Re} {\text{Br}}M^{2} C_{2} C_{4} C_{4x} }}{4}, p_{8} = - \frac{{\Pr \text{Re} {\text{Br}}M^{3} C_{4}^{2} C_{4x} }}{4}, p_{9} = - \Pr \text{Re} D_{2} C_{4x} ,$$
$$p_{10} = - \frac{{\Pr \text{Re} {\text{Br}}M^{4} C_{4}^{2} C_{4x} }}{4}, p_{11} = \frac{{\Pr \text{Re} {\text{Br}}M^{3} C_{4}^{2} C_{4x} }}{4},$$
$$p_{12} = - {\text{Br}}C_{4} \left( {2M^{4} A_{4} + 2l_{1} - \frac{{4l_{2} }}{M} - kM^{4} C_{2} C_{4x} } \right), p_{13} = - \frac{{{\text{Br}}Ml_{2} C_{4} }}{2},$$
$$p_{14} = \frac{{\Pr \text{Re} {\text{Br}}M^{3} C_{4}^{2} C_{2x} }}{4} + \frac{{{\text{Br}}C_{4} }}{2}\left( {\frac{{l_{2} }}{2} - Ml_{1} - kM^{5} C_{4} C_{2x} } \right),$$
$$\begin{aligned} & G_{0} = - \frac{1}{2}\left[ {\left( {p_{1} - \frac{{p_{12} }}{2}} \right)\left( {\eta \beta_{2} + \frac{{\eta^{2} }}{2}} \right) + \left( {p_{3} - \frac{{p_{13} }}{{8M^{2} }}} \right)\left( {\frac{{2\eta^{3} \beta_{2} }}{3} + \frac{{\eta^{4} }}{6}} \right)} \right. \\ & \quad + \cosh M\eta \left( {\frac{{2p_{4} }}{{M^{2} }} + \frac{{p_{8} }}{{M^{2} }} + \frac{{2p_{6} }}{{M^{2} }}\left( {\eta^{2} + \frac{6}{{M^{2} }}} \right) - \frac{{4p_{10} }}{{M^{3} }} - \frac{{p_{11} }}{{M^{2} }} + \beta_{2} \left( { - \frac{{4p_{6} \eta }}{{M^{2} }} + \frac{{2p_{10} \eta }}{M}} \right)} \right) \\ & \quad + \sinh M\eta \left( { - \frac{{8p_{6} \eta }}{{M^{3} }} + \frac{{2p_{10} \eta }}{{M^{2} }} + \beta_{2} \left( {\frac{{2p_{4} }}{M} + \frac{{2p_{6} }}{M}\left( {\eta^{2} + \frac{2}{{M^{2} }}} \right) + \frac{{p_{8} }}{M} - \frac{{2p_{10} }}{{M^{2} }} - \frac{{p_{11} }}{M}} \right)} \right) \\ & \quad + \sinh 2M\eta \left( {\frac{{p_{14} \eta }}{{2M^{2} }} - \frac{{p_{13} }}{{2M^{3} }}\eta + \beta_{2} \left( {\frac{{p_{7} }}{M} + \frac{{p_{12} }}{2M} + \frac{{p_{13} }}{2M}\left( {\eta^{2} + \frac{1}{{2M^{2} }}} \right) - \frac{{p_{14} }}{{2M^{2} }}} \right)} \right) \\ & \quad + \cosh 2M\eta \left( {\frac{{p_{7} }}{{2M^{2} }} + \frac{{p_{12} }}{{4M^{2} }} + \frac{{p_{13} }}{{4M^{2} }}\left( {\eta^{2} + \frac{3}{{2M^{2} }}} \right) - \frac{{p_{14} }}{{2M^{3} }} + \beta_{2} \left( {\frac{{p_{14} \eta }}{M} - \frac{{p_{13} \eta }}{{2M^{2} }}} \right)} \right) \\ & \quad \left. { + \cosh 3M\eta \left( {\frac{{p_{8} }}{{9M^{2} }} + \frac{{p_{11} }}{{9M^{2} }}} \right) + \sinh 3M\eta \left( {\beta_{2} \left( {\frac{{p_{8} }}{3M} + \frac{{p_{11} }}{3M}} \right)} \right)} \right], \\ \end{aligned}$$
$$\begin{aligned} & G_{1} = \frac{1}{{2\left( {\eta + \beta_{2} } \right)}} \\ & \left[ { - p_{2} \eta^{2} \left( {\beta_{2} + \frac{\eta }{3}} \right) + \cosh M\eta \left( { - \frac{{2p_{5} \eta }}{{M^{2} }} + \frac{{2p_{5} \beta_{2} }}{{M^{2} }} - \frac{{2p_{9} \beta_{2} }}{M}} \right)} \right. \\ & \quad \left. { + \sinh M\eta \left( {\frac{{4p_{5} }}{{M^{3} }} - \frac{{2p_{9} }}{{M^{2} }} - \frac{{2p_{5} \beta_{2} \eta }}{M}} \right)} \right], \\ \end{aligned}$$
$$q_{1} = \text{Re} {\text{Sc}}C_{2} E_{1x} - \frac{{ {\text{Sr}}}}{2 }\left( {p_{1} - \frac{{p_{12} }}{2}} \right),q_{2} = \text{Re} {\text{Sc}}\left( {C_{2} E_{2x} - C_{2x} E_{2} } \right) - {\text{Sr}}p_{2} ,$$
$$q_{3} = \frac{{\text{Re} {\text{Sc SrBr}}M^{4} C_{4} }}{8 }\left( {C_{4} C_{2x} - C_{2} C_{4x} } \right) - {\text{Sr}}\left( {p_{3} - \frac{{p_{13} }}{{8M^{2} }}} \right),$$
$$q_{4} = \text{Re} {\text{Sc}}MC_{4} E_{1x} - {\text{Sc}}\left( {p_{4} + \frac{{p_{8} }}{2} - \frac{{p_{11} }}{2}} \right),q_{5} = \text{Re} {\text{Sc}}MC_{4} E_{2x} - {\text{Sr}}p_{5} ,$$
$$q_{6} = - \frac{{\text{Re} {\text{Sc }}N_{t} {\text{Br}}M^{5} C_{4}^{2} C_{4x} }}{{8 N_{b} }} - {\text{Sr}}p_{6} ,q_{7} = \frac{{\text{Re} {\text{Sc SrBr}}M^{2} C_{2} C_{4} C_{4x} }}{4} - {\text{Sr}}\left( {p_{7} + \frac{{p_{12} }}{2}} \right),$$
$$q_{8} = - \frac{\text{Sr}}{2 }p_{13} ,q_{9} = \frac{{\text{Re} {\text{Sc SrBr}}M^{3} C_{4}^{2} C_{4x} }}{4 },q_{10} = - \text{Re} {\text{Sc}}E_{2} C_{4x} - {\text{Sr}}p_{9} ,$$
$$q_{11} = \frac{{\text{Re} {\text{Sc}} N_{t} {\text{Br}}M^{4} C_{4}^{2} C_{4x} }}{{8 N_{b} }} - {\text{Sr}}p_{10} , q_{12} = - \frac{{\text{Re} {\text{Sc SrBr}}M^{3} C_{4}^{2} C_{2x} }}{4} - {\text{Sr}}p_{14} ,$$
$$q_{13} = - \frac{{\text{Re} {\text{Sc SrBr}}M^{3} C_{4}^{2} C_{4x} }}{{4 {\text{Sr}}}},\,q_{14} = - \frac{\text{Sr}}{ 2}\left( {p_{8} + p_{11} } \right),$$
$$\begin{aligned} & H_{0} = - \frac{1}{2}\left[ {q_{1} \eta \left( {\beta_{3} + \frac{\eta }{2}} \right) + \frac{{q_{3} \eta^{3} }}{3}\left( {2\beta_{3} + \frac{\eta }{2}} \right)} \right. \\ & \quad + \cosh M\eta \left( {\frac{{2q_{4} }}{{M^{2} }} + \frac{{q_{9} }}{{M^{2} }} + \frac{{2q_{6} }}{{M^{2} }}\left( {\eta^{2} + \frac{6}{{M^{2} }}} \right) - \frac{{4q_{11} }}{{M^{3} }} - \frac{{q_{13} }}{{M^{2} }} + \beta_{3} \left( { - \frac{{4q_{6} \eta }}{{M^{2} }} + \frac{{2q_{11} \eta }}{M}} \right)} \right) \\ & \quad + \sinh M\eta \left( { - \frac{{8q_{6} \eta }}{{M^{3} }} + \frac{{2q_{11} \eta }}{{M^{2} }} + \beta_{3} \left( {\frac{{2q_{4} }}{M} + \frac{{2q_{6} }}{M}\left( {\eta^{2} + \frac{2}{{M^{2} }}} \right) + \frac{{q_{9} }}{M} - \frac{{2q_{11} }}{{M^{2} }} - \frac{{q_{13} }}{M}} \right)} \right) \\ & \quad + \cosh 2M\eta \left( {\frac{{q_{7} }}{{2M^{2} }} + \frac{{q_{8} }}{{2M^{2} }}\left( {\eta^{2} + \frac{3}{{2M^{2} }}} \right) - \frac{{q_{12} }}{{2M^{3} }} + \beta_{3} \left( {\frac{{q_{12} \eta }}{M} - \frac{{q_{8} \eta }}{{M^{2} }}} \right)} \right) \\ & \quad + \sinh 2M\eta \left( {\frac{{q_{12} \eta }}{{2M^{2} }} - \frac{{q_{8} \eta }}{{M^{3} }} + \beta_{3} \left( {\frac{{q_{7} }}{M} - \frac{{q_{12} }}{{2M^{2} }} + \frac{{q_{8} }}{M}\left( {\eta^{2} + \frac{1}{{2M^{2} }}} \right)} \right)} \right) \\ & \quad \left. { + \cosh 3M\eta \left( {\frac{{q_{9} }}{{9M^{2} }} + \frac{{q_{13} }}{{9M^{2} }} + \frac{{2q_{14} }}{{9M^{2} }}} \right) + \sinh 3M\eta \left( {\beta_{3} \left( {\frac{{q_{9} }}{3M} + \frac{{q_{13} }}{3M} + \frac{{2q_{14} }}{3M}} \right)} \right)} \right], \\ \end{aligned}$$
$$\begin{aligned} & H_{1} = \frac{1}{{2\left( {\eta + \beta_{3} } \right)}} \\ & \left[ { - q_{2} \eta^{2} \left( {\beta_{3} + \frac{\eta }{3}} \right) + \cosh M\eta \left( { - \frac{{2q_{5} \eta }}{{M^{2} }} - \beta_{3} \left( { - \frac{{2q_{5} }}{{M^{2} }} + \frac{{2q_{10} }}{M}} \right)} \right)} \right. \\ & \quad \left. { + \,\sinh M\eta \left( {\frac{{4q_{5} }}{{M^{3} }} - \frac{{2q_{10} }}{{M^{2} }} - \frac{{2q_{5} \beta_{3} \eta }}{M}} \right)} \right]. \\ \end{aligned}$$

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rani, J., Hina, S. & Mustafa, M. A Novel Formulation for MHD Slip Flow of Elastico-Viscous Fluid Induced by Peristaltic Waves with Heat/Mass Transfer Effects. Arab J Sci Eng 45, 9213–9225 (2020). https://doi.org/10.1007/s13369-020-04722-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04722-0

Keywords

Navigation