Skip to main content
Log in

Comparative Adsorption of Pb2+ on Nanostructured Iron–Zirconium Oxide with Fe-to-Zr Molar Ratio of 1:1 and 1:2: Thermodynamic and Kinetic Studies

  • Research Article-Chemistry
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Nanostructured iron–zirconium oxides (NIZOs), with Fe-to-Zr molar ratio of 1:1 and 1:2, have been found to show high adsorption efficiency toward Pb2+ from aqueous solution. The NIZO was synthesized by the co-precipitation method and characterized in terms of XRD, TEM, SEM–EDX, BET surface area analysis, TGA, FT-IR spectroscopy and zeta potential measurement. The data of adsorption of Pb2+ on the NIZO, under optimized condition of pH, Pb2+ concentration, adsorbent amount, time and temperature, were fitted in Langmuir, Freundlich and Temkin adsorption model, and the data showed the best agreement with Langmuir model with R2 = 0.990 and 0.994 for Fe/Zr molar ratio = 1:1 and 1:2, respectively. The thermodynamic studies showed that the adsorption of Pb2+ on the NIZO proceeds spontaneously and exothermically through the involvement of weak van der Waals forces. Further, the adsorption of Pb2+ on the NIZO was found to follow pseudo-second-order kinetics.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Scheme 1
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Ahuja, S.: Lessons learned from water disasters of the world. Separ. Sci. Tech. 11, 417–427 (2019)

    Article  Google Scholar 

  2. Kabeer, A.; Mailafiya, M.M.; Danmaigoro, A.; Rahim, E.A.; bu Bakar, M.Z.A.: Therapeutic potential of curcumin against lead-induced toxicity: a review. Biomed. Res. Therap. 6, 3053–3066 (2019)

    Article  Google Scholar 

  3. Carocci, A.; Catalano, A.; Lauria, G.; Sinicropi, M.S.; Genchi, G.: Lead toxicity, antioxidant defense and environment. Rev. Environ. Contam. Toxicol. 238, 45–67 (2016)

    Google Scholar 

  4. El Henafy, H.M.; Ibrahim, M.A.; El Aziz, S.A.A.; Gouda, E.M.: Oxidative stress and DNA methylation in male rat pups provoked by the transplacental and translactational exposure to bisphenol A. Environ. Sci. Pollut. Res. 27, 1–7 (2019)

    Google Scholar 

  5. Ahmed, M.O.; Ibrahim, M.N.; Mohammed, S.M.: Physiological and histological effects of broccoli on lead acetate induced hepatotoxicity in young male albino rats. IIJVS 33, 21–26 (2019)

    Article  Google Scholar 

  6. Mohiuddin, A.K.: Heavy metals in cosmetics: the notorious daredevils and burning health issues. Am. J. Biomed. Sci. Res. 4, 332–337 (2019)

    Article  Google Scholar 

  7. Ensafi, A.M.; Moghadam, P.N.; Baradarani, M.M.: Synthesis of a new nanocomposite based-on graphene-oxide for selective removal of Pb2+ ions from aqueous solutions. Polym. Compos. 40, 730–737 (2019)

    Article  Google Scholar 

  8. Sharma, D.; Chaudhari, P.K.; Prajapati, A.K.: Removal of chromium (VI) and lead from electroplating effluent using electrocoagulation. Sep. Sci. Technol. 55, 1–11 (2019)

    Google Scholar 

  9. Bora, A.J.; Dutta, R.K.: Removal of metals (Pb, Cd, Cu, Cr, Ni and Co) from drinking water by oxidation-coagulation-absorption at optimized pH. J. Water Process. Eng. 31, 100839 (2019)

    Article  Google Scholar 

  10. Ali, S.; Rehman, S.A.U.; Luan, H.Y.; Farid, M.U.; Huang, H.: Challenges and opportunities in functional carbon nanotubes for membrane-based water treatment and desalination. Sci. Total Environ. 646, 1126–1139 (2019)

    Article  Google Scholar 

  11. Qu, J.; Song, T.; Liang, J.; Bai, X.; Li, Y.; Wei, Y.; Huang, S.; Dong, L.; Jin, Y.U.: Adsorption of lead (II) from aqueous solution by modified Auricularia matrix waste: a fixed-bed column study. Ecotoxicol. Environ. Saf. 169, 722–729 (2019)

    Article  Google Scholar 

  12. Xu, H.; Yuan, H.; Yu, J.; Lin, S.: Study on the competitive adsorption and correlational mechanism for heavy metal ions using the carboxylated magnetic iron oxide nanoparticles (MNPs-COOH) as efficient adsorbents. Appl. Surf. Sci. 473, 960–966 (2019)

    Article  Google Scholar 

  13. Egirani, D.; Latif, M.T.; Wessey, N.; Poyi, N.R.; Acharjee, S.: Synthesis and characterization of kaolinite coated with copper oxide and its effect on the removal of aqueous Lead (II) ions. Appl. Water Sci. 9, 109 (2019)

    Article  Google Scholar 

  14. Tsade, H.; Abebe, B.; Murthy, H.A.: Nano sized Fe–Al oxide mixed with natural maize cob sorbent for lead remediation. Mater. Res. Express 6, 085043 (2019)

    Article  Google Scholar 

  15. Sharma, M.; Singh, J.; Hazra, S.; Basu, S.: Adsorption of heavy metal ions by mesoporous ZnO and TiO2@ZnO monoliths: adsorption and kinetic studies. Microchem. J. 145, 105–112 (2019)

    Article  Google Scholar 

  16. Ibupoto, A.S.; Qureshi, U.A.; Arain, M.; Ahmed, F.; Khatri, Z.; Brohi, R.Z.; Kim, I.S.; Ibupoto, Z.: Zno/Carbon nanofibers for efficient adsorption of lead from aqueous solutions. Environ. Technol. 12, 1–11 (2019)

    Google Scholar 

  17. Xie, X.; Huang, J.; Zhang, Y.; Tong, Z.; Liao, A.; Guo, X.; Qin, Z.; Guo, Z.: Aminated cassava residue-based magnetic microspheres for Pb(II) adsorption from wastewater. Kor. J. Chem. Eng. 36, 226–235 (2019)

    Article  Google Scholar 

  18. Mousavi, S.V.; Bozorgian, A.; Mokhtari, N.; Gabris, M.A.; Nodeh, H.R.; Ibrahim, W.A.W.: A novel cyanopropylsilane-functionalized titanium oxide magnetic nanoparticle for the adsorption of nickel and lead ions from industrial wastewater: equilibrium, kinetic and thermodynamic studies. Microchem. J. 145, 914–920 (2019)

    Article  Google Scholar 

  19. Shi, Q.; Terracciano, A.; Zhao, Y.; Wei, C.; Christodoulatos, C.; Meng, X.: Evaluation of metal oxides and activated carbon for lead removal: kinetics, isotherms, column tests, and the role of co-existing ions. Sci. Total Environ. 648, 176–183 (2019)

    Article  Google Scholar 

  20. Sarma, G.K.; Gupta, S.S.; Bhattacharyya, K.G.: Nanomaterials as versatile adsorbents for heavy metal ions in water: a review. Environ. Sci. Pollut. Res. 26, 6245–6278 (2019)

    Article  Google Scholar 

  21. Huang, T.; Liu, L.; Zhang, S.; Xu, J.: Evaluation of electrokinetics coupled with a reactive barrier of activated carbon loaded with a nanoscale zero-valent iron for selenite removal from contaminated soils. J. Hazard. Mater. 368, 104–114 (2019)

    Article  Google Scholar 

  22. Irawan, C.; Nata, I.F.; Lee, C.K.: Removal of Pb(II) and As (V) using magnetic nanoparticles coated montmorillonite via one-pot solvothermal reaction as adsorbent. J. Environ. Chem. Eng. 7, 103000 (2019)

    Article  Google Scholar 

  23. Lounsbury, A.W.; Wang, R.; Plata, D.L.; Billmyer, N.; Muhich, C.; Kanie, K.; Sugimoto, T.; Peak, D.; Zimmerman, J.B.: Preferential adsorption of selenium oxyanions onto 1 1 0 and 0 1 2 nano-hematite facets. J. Colloid Interface Sci. 537, 465–474 (2019)

    Article  Google Scholar 

  24. Chen, W.; Lu, Z.; Xiao, B.; Gu, P.; Yao, W.; Xing, J.; Asiri, A.M.; Alamry, K.A.; Wang, X.; Wang, S.: Enhanced removal of lead ions from aqueous solution by iron oxide nanomaterials with cobalt and nickel doping. J. Clean. Prod. 211, 1250–1258 (2019)

    Article  Google Scholar 

  25. Lingamdinne, L.P.; Koduru, J.R.; Rao, K.R.: Green synthesis of iron oxide nanoparticles for lead removal from aqueous solutions. Key Eng. Mater. 805, 122–127 (2019)

    Article  Google Scholar 

  26. Gupta, K.; Biswas, K.; Ghosh, U.C.: Nanostructure Fe(III)–Zr(IV) binary mixed oxide: synthesis, characterization, and physicochemical aspects of As(III) sorption from the aqueous solution. Ind. Eng. Chem. Res. 4, 9903–9912 (2008)

    Article  Google Scholar 

  27. Gupta, K.; Basu, T.; Ghosh, U.C.: Sorption characteristics of arsenic(V) for removal from water using agglomerated nanostructure Fe(III)–Zr(IV) bimetal mixed oxide. J. Chem. Eng. 54, 2222–2228 (2009)

    Google Scholar 

  28. Ren, Z.; Zhang, G.; Chen, J.P.: Adsorptive removal of arsenic from water by an iron–zirconium binary oxide adsorbent. J. Colloid Interface Sci. 358, 230–237 (2011)

    Article  Google Scholar 

  29. Ali, S.R.; Arya, M.C.; Kalam, A.; Al-Sehemi, A.G.; Khan, Z.; Ansari, S.; Kumar, R.: Adsorption potential of zirconium-ferrite nanoparticles for phenol, 2-chlorophenol and 2-nitrophenol: thermodynamic and kinetic studies. Desalin. Water Treat. 179, 183–196 (2020)

    Article  Google Scholar 

  30. Ali, S.R.; Kumar, R.; Kadabinakatti, S.K.; Arya, M.C.: Enhanced UV and visible light-driven photocatalytic degradation of tartrazine by nickel-doped cerium oxide nanoparticles. Mater. Res. Express 6, 025513 (2018)

    Article  Google Scholar 

  31. Shahid, S.A.; Nafady, A.; Ullah, I.; Yun, H.; Yap, T.; Shakir, I.; Anwar, F.; Rashid, U.: Characterization of newly synthesized ZrFe2O5 nanomaterial and investigations of its tremendous photocatalytic properties under visible light irradiation. J. Nanomater. 2013, 1–6 (2013)

    Article  Google Scholar 

  32. Atkins, P.; De Paula, J.: Physical Chemistry, 9th edn. W. H. Freeman and Company, New York (2010)

    Google Scholar 

  33. Chang, R.; Thoman Jr., J.W.: Physical Chemistry for the Chemical Sciences. University Science Books, Mill Valley (2014)

    Google Scholar 

  34. Lima, E.C.; Hosseini-Bandegharaei, A.; Moreno-Pirajan, J.C.; Anastopoulos, I.: A critical review of the estimation of the thermodynamic parameters on adsorption equilibria. Wrong use of equilibrium constant in the Van’t Hoff equation for calculation of thermodynamic parameters of adsorption. J. Mol. Liq. 273, 425–434 (2019)

    Article  Google Scholar 

  35. Liu, Y.; Xu, H.: Equilibrium, thermodynamics and mechanisms of Ni2+ biosorption by aerobic granules. Biochem. Eng. J. 35, 174–182 (2007)

    Article  Google Scholar 

  36. Prola, L.D.T.; Machado, F.M.; Bergmann, C.P.; de Souza, F.E.; Gally, C.R.; Lima, E.C.; Adebayo, M.A.; Dias, S.L.P.; Calvete, T.: Adsorption of Direct Blue 53 dye from aqueous solutions by multi-walled carbon nanotubes and activated carbon. J. Environ. Manag. 130, 166–175 (2013)

    Article  Google Scholar 

  37. Saucier, C.; Karthickeyan, P.; Ranjithkumar, V.; Lima, E.C.; dos Reis, G.S.; de Brum, I.A.S.: Efficient removal of amoxicillin and paracetamol from aqueous solutions using magnetic activated carbon. Environ. Sci. Pollut. Res. 24, 5918–5932 (2017)

    Article  Google Scholar 

  38. Long, F.; Gong, J.L.; Zeng, G.M.; Chen, L.; Wang, X.Y.; Deng, J.H.; Niu, Q.Y.; Zhang, H.Y.; Zhang, X.R.: Removal of phosphate from aqueous solution by magnetic Fe–Zr binary oxide. Chem. Eng. J. 171, 448–455 (2011)

    Article  Google Scholar 

  39. Namduri, H.; Nasrazadani, S.: Quantitative analysis of iron oxides using Fourier transform infrared spectrophotometry. Corros. Sci. 50, 2493–2497 (2008)

    Article  Google Scholar 

  40. Le Toullec, M.; Simmons, C.J.; Simmons, J.H.: Infrared spectroscopic studies of the hydrolysis reaction during leaching of heavy-metal fluoride glasses. J. Am. Cream. Soc. 71, 219–224 (1988)

    Article  Google Scholar 

  41. Dou, X.; Mohan, D.; Pittman Jr., C.U.; Yang, S.: Remediating fluoride from water using hydrous zirconium oxide. Chem. Eng. J. 198, 236–245 (2012)

    Article  Google Scholar 

  42. Dong, L.; Jiao, F.; Qin, W.; Zhu, H.; Jia, W.: Activation effect of lead ions on scheelite flotation: adsorption mechanism, AFM imaging and adsorption model. Sep. Purif. Technol. 209, 955–963 (2019)

    Article  Google Scholar 

  43. Zhang, Q.; Zhu, H.; Yang, B.; Jia, F.; Yan, H.; Zeng, M.; Qu, H.: Effect of Pb2+ on the flotation of molybdenite in the presence of sulfide ion. Results Phys. 14, 102361 (2019)

    Article  Google Scholar 

  44. Nguyen, T.T.; Nguyen, T.N.T.; Bach, L.G.; Nguyen, D.T.; Bui, T.P.Q.: Adsorptive removal of Pb(II) using exfoliated graphite adsorbent: influence of experimental conditions and magnetic CoFe2O4 decoration. IIUM Eng. J. 20, 202–215 (2019)

    Article  Google Scholar 

  45. Sag, Y.; Kutsal, T.: Determination of the biosorption heats of heavy metal ions on Zoogloea ramigera and Rhizopus arrhizus. Biochem. Eng. J. 6, 145–151 (2000)

    Article  Google Scholar 

  46. Hayward, D.O.; Trapnell, B.M.W.: Chemisorption, 2nd edn. Butterworth, London (1964)

    Google Scholar 

  47. Liu, Yu: Is the free energy change of adsorption correctly calculated? J. Chem. Eng. Data 54, 1981–1985 (2009)

    Article  Google Scholar 

Download references

Acknowledgements

The corresponding author is highly thankful to the ‘University Grant Commission, New Delhi’, for ‘Rajiv Gandhi National Fellowship (RGNF)’ (Letter Number F1-17.1/2016-17/RGNF-2015-17-SC-UTT-15953). The authors (SRA, AK and AGS) extend their gratitude to the Deanship of Scientific Research at King Khalid University for funding the present research work through the Research groups program under Grant Number R.G.P. 2/36/40.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajesh Kumar.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ali, S.R., Kalam, A., Al-Sehemi, A.G. et al. Comparative Adsorption of Pb2+ on Nanostructured Iron–Zirconium Oxide with Fe-to-Zr Molar Ratio of 1:1 and 1:2: Thermodynamic and Kinetic Studies. Arab J Sci Eng 46, 287–300 (2021). https://doi.org/10.1007/s13369-020-04715-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04715-z

Keywords

Navigation