Skip to main content
Log in

A highly programmable 60-dB gain analog baseband circuit with DC-offset cancellation for short-range FMCW radar applications

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

This paper presents a fully integrated analog baseband circuit with high reconfigurability intended for use in short-range frequency-modulated continuous-wave (FMCW) radar sensors. The fully differential baseband circuitry achieves maximum overall gain of 60 dB which is adjustable with a 3-dB step. Second-order high-pass filter and fifth-order low-pass filter are incorporated in chain and possess tunable cutoff frequencies in the range 0.1–1 MHz and 0.25–1.3 MHz, respectively. They are adjustable with high accuracy, yielding simultaneously the rejection of undesired signals and neglecting the effects from process, voltage, and temperature variations. In order to enhance baseband circuit utilization and flexibility for radar’s targets with various proximities and velocities, two operating modes are proposed for low noise and high linearity. Simulated at maximum gain setting, it achieves an in-band third-order input intercept point of \(-17\,\text {dBm}\) and an input-referred noise of 6.5 or \(14.7\,{\text {nV}}/\sqrt{{\text {Hz}}}\) depending on operating mode. Furthermore, DC offset cancellation circuit is incorporated in baseband chain. Implemented in a commercially available 130-nm SiGe BiCMOS process technology, as part of the large FMCW transceiver chip, it occupies the area of \(0.36\,{\text {mm}}^2\) and consumes 30 or \(33\,{\text {mW}}\) in low-noise or high-linearity modes, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Lee, J., Li, Y.-A., Hung, M.-H., & Huang, S.-J. (2010). A fully-integrated 77-GHz FMCW radar transceiver in 65-nm CMOS technology. IEEE Journal of Solid-State Circuits, 45(12), 2746–2756.

    Article  Google Scholar 

  2. Hasch, J., Topak, E., Schnabel, R., Zwick, T., Weigel, R., & Waldschmidt, C. (2012). Millimeter-wave technology for automotive radar sensors in the 77 GHz frequency band. IEEE Transactions on Microwave Theory and Techniques, 60(3), 845–860.

    Article  Google Scholar 

  3. Jia, H., Kuang, L., Zhu, W., Ma, F., Wang, Z., Wang, Z., et al. (2016). A 77 GHz frequency doubling two-path phased-array FMCW transceiver for automotive radar. IEEE Journal of Solid-State Circuits, 51(10), 2299–2311.

    Article  Google Scholar 

  4. Milosavljević, I. M., Krčum, D. P., Glavonjić, Đ. P., Jovanović, S. P., Mihajlović, V. R., & Tasovac, D. M. (2018). A SiGe highly integrated FMCW transmitter module with a 59.5–70.5-GHz single sweep cover. IEEE Transactions on Microwave Theory and Techniques, 66(9), 4121–4133.

    Article  Google Scholar 

  5. Milosavljević, I. M., Glavonjić, Đ. P., Krčum, D. P., Jovanović, S. P., Mihajlović, V. R., & Milovanović, V. M. (2019). A 55–64-GHz fully integrated miniaturized FMCW radar sensor module for short-range applications. IEEE Microwave and Wireless Components Letters, 29(10), 677–679.

    Article  Google Scholar 

  6. Wang, Y., Ye, L., Liao, H., Huang, R., & Wang, Y. (2015). Highly reconfigurable analog baseband for multi-standard wireless receivers in 65-nm CMOS. IEEE Transactions on Circuits and Systems II: Express Briefs, 62(3), 296–300.

    Article  Google Scholar 

  7. Wu, B., Duan, Z., Pan, D., Wang, Y., & Zhou, Y. (2018). A high-linearity CMOS analog baseband circuit with reconfigurable gain and bandwidth for 76–81 GHz automotive radar. In Proceedings of 2018 14th IEEE international conference on solid-state integrated circuit technology (ICSICT) (pp. 1005–1007).

  8. Wu, W., Zhang, L., & Wang, Y. (2019). A PVT-robust analog baseband with DC offset cancellation for FMCW automotive radar. IEEE Access, 7, 43249–43257.

    Article  Google Scholar 

  9. Milosavljević, I. M., Glavonjić, Đ. P., Krčum, D. P., Saranovac, L. V., & Milovanović, V. M. (2017). A highly linear and fully-integrated FMCW synthesizer for 60 GHz radar applications with 7 GHz bandwidth. Analog Integrated Circuits and Signal Processing, 90(3), 591–604.

    Article  Google Scholar 

  10. Razavi, B. (1997). Design considerations for direct-conversion receivers. IEEE Transactions on Circuits and Systems II: Analog and Digital Signal Processing, 44(3), 428–435.

    Article  Google Scholar 

  11. Abu Bakar, F., Nehal, Q., Ukkonen, P., Saari, V., & Halonen, K. (2013). Analog baseband chain of synthetic aperture radar (SAR) receiver. Analog Integrated Circuits and Signal Processing, 75(1), 41–51.

    Article  Google Scholar 

  12. Hollman, T., Lindfors, S., Lansirinne, M., Jussila, J., & Halonen, K. A. I. (2001). A 2.7-V CMOS dual-mode baseband filter for PDC and WCDMA. IEEE Journal of Solid-State Circuits, 36(7), 1148–1153.

    Article  Google Scholar 

  13. Matteis, M. D., D’Amico, S., & Baschirotto, A. (2009). A 0.55 V 60 dB-DR fourth-order analog baseband filter. IEEE Journal of Solid-State Circuits, 44(9), 2525–2534.

    Article  Google Scholar 

  14. Shih, H.-Y., Kuo, C.-N., Chen, W.-H., Yang, T.-Y., & Juang, K.-C. (2010). A 250 MHz 14 dB-NF 73 dB-gain 82 dB-DR analog baseband chain with digital-assisted DC-offset calibration for ultra-wideband. IEEE Journal of Solid-State Circuits, 45(2), 338–350.

    Article  Google Scholar 

  15. Shin, S.-H., Kweon, S.-J., Jo, S.-H., Choi, Y.-C., Lee, S., & Yoo, H.-Y. (2015). A 0.7-MHz–10-MHz CT + DT hybrid baseband chain with improved passband flatness for LTE application. IEEE Transactions on Circuits and Systems I: Regular Papers, 62(1), 244–253.

    Article  Google Scholar 

  16. D’Amico, S., Giannini, V., & Baschirotto, A. (2006). A 4th-order active-\(\text{ G }_{\text{ m }}\)-RC reconfigurable (UMTS/WLAN) filter. IEEE Journal of Solid-State Circuits, 41(7), 1630–1637.

    Article  Google Scholar 

  17. Vasilopoulos, A., Vitzilaios, G., Theodoratos, G., & Papananos, Y. (2006). A low-power wideband reconfigurable integrated active-RC filter with 73 dB SFDR. IEEE Journal of Solid-State Circuits, 41(9), 1997–2008.

    Article  Google Scholar 

  18. Laxminidhi, T., Prasadu, V., & Pavan, S. (2009). Widely programmable high-frequency active \(RC\) filters in CMOS technology. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(2), 327–336.

    Article  MathSciNet  Google Scholar 

  19. Ye, L., Shi, C., Liao, H., Huang, R., & Wang, Y. (2013). Highly power-efficient active-RC filters with wide bandwidth-range using low-gain push–pull opamps. IEEE Transactions on Circuits and Systems I: Regular Papers, 60(1), 95–107.

    Article  MathSciNet  Google Scholar 

  20. Behbahani, F., Karimi, A., Tan, W. G., & Roithmeier, A. (2001). Adaptive analog IF signal processor for a wideband CMOS wireless receiver. IEEE Journal of Solid-State Circuits, 36(8), 1205–1217.

    Article  Google Scholar 

  21. Saari, V., Kaltiokallio, M., Lindfors, S., Ryynanen, J., & Halonen, K. A. I. (2009). A 240-MHz low-pass filter with variable gain in 65-nm CMOS for a UWB radio receiver. IEEE Transactions on Circuits and Systems I: Regular Papers, 56(7), 1488–1499.

    Article  MathSciNet  Google Scholar 

  22. Akerberg, D., & Mossberg, K. (1974). A versatile active \(RC\) building block with inherent compensation for the finite bandwidth of the amplifier. IEEE Transactions on Circuits and Systems, 21(1), 75–78.

    Article  Google Scholar 

  23. Hilber, G., Burgstaller, A., Stitz, E., Rauchenecker, A., Ostermann, T., Gila, J., et al. (2014). Stability analysis and design methodology for an Akerberg–Mossberg filter. In Proceedings of 2014 IEEE international symposium on circuits and systems (ISCAS) (pp. 2097–2100).

  24. Li, S.-T., Li, J.-C., Gu, X.-C., Wang, H.-Y., Tang, M.-H., & Zhuang, Z.-W. (2013). A continuously and widely tunable 5 dB-NF 89.5 dB-gain 85.5 dB-DR CMOS TV receiver with digitally-assisted calibration for multi-standard DBS applications. IEEE Journal of Solid-State Circuits, 48(11), 2762–2774.

    Article  Google Scholar 

  25. Ryynanen, J., Hotti, M., Saari, V., Jussila, J., Malinen, A., Sumanen, L., et al. (2006). WCDMA multicarrier receiver for base-station applications. IEEE Journal of Solid-State Circuits, 41(7), 1542–1550.

    Article  Google Scholar 

Download references

Acknowledgements

The authors would like to thank NOVELIC for financially and logistically supporting the design development and chip fabrication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dušan V. Obradović.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Obradović, D.V., Glavonjić, Ð.P., Krčum, D.P. et al. A highly programmable 60-dB gain analog baseband circuit with DC-offset cancellation for short-range FMCW radar applications. Analog Integr Circ Sig Process 104, 299–309 (2020). https://doi.org/10.1007/s10470-020-01679-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-020-01679-w

Keywords

Navigation