Skip to main content
Log in

Decay Rates of the Compressible Hall-MHD Equations for Quantum Plasmas

  • Published:
Acta Applicandae Mathematicae Aims and scope Submit manuscript

Abstract

In this paper, decay rates of the compressible Hall-MHD equations for quantum plasmas in three-dimensional whole space are studied. By using a general energy method, the time decay rates for higher-order spatial derivatives of density, velocity and magnetic field are established when the initial perturbation belongs to \(\dot{H}^{-s}\) with \(0 \leq s < \frac{3}{2}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Balbus, S.A., Terquem, C.: Linear analysis of the Hall effect in protostellar disks. Astrophys. J. 552, 235–247 (2001)

    Google Scholar 

  2. Chen, Q., Tan, Z.: Global existence and convergence rates of smooth solutions for the compressible magnetohydrodynamic equations. Nonlinear Anal. 72, 4438–4451 (2010)

    MathSciNet  MATH  Google Scholar 

  3. Deckelnick, K.: Decay estimates for the compressible Navier-Stokes equations in unbounded domains. Math. Z. 209, 115–130 (1992)

    MathSciNet  MATH  Google Scholar 

  4. Deckelnick, K.: \(L^{2}\)-decay for the compressible Navier-Stokes equations in unbounded domains. Commun. Partial Differ. Equ. 18, 1445–1476 (1993)

    MATH  Google Scholar 

  5. Duan, R.J., Liu, H.X., Ukai, S., Yang, T.: Optimal \(L^{p}\)-\(L^{q}\) convergence rates for the compressible Navier-Stokes equations with potential force. J. Differ. Equ. 238, 220–233 (2007)

    MATH  Google Scholar 

  6. Duan, R.J., Ukai, S., Yang, T., Zhao, H.J.: Optimal convergence rates for the compressible Navier-Stokes equations with potential forces. Math. Models Methods Appl. Sci. 17, 737–758 (2007)

    MathSciNet  MATH  Google Scholar 

  7. Fan, J.S., Alsaedi, A., Hayat, T., Nakamura, G., Zhou, Y.: On strong solutions to the compressible Hall-magnetohydrodynamic system. Nonlinear Anal., Real World Appl. 22, 423–434 (2015)

    MathSciNet  MATH  Google Scholar 

  8. Forbes, T.G.: Magnetic reconnection in solar flares. Geophys. Astrophys. Fluid Dyn. 62, 15–36 (1991)

    Google Scholar 

  9. Gao, J.C., Yao, Z.A.: Global existence and optimal decay rates of solutions for compressible Hall-MHD equations. Discrete Contin. Dyn. Syst. 36(6), 3077–3106 (2017)

    MathSciNet  MATH  Google Scholar 

  10. Gao, J.C., Chen, Y.H., Yao, Z.A.: Long-time behavior of solution to the compressible magnetohydrodynamic equations. Nonlinear Anal. 128, 122–135 (2015)

    MathSciNet  MATH  Google Scholar 

  11. Gao, J.C., Tao, Q., Yao, Z.A.: Optimal decay rates of classical solutions for the full compressible MHD equations. Z. Angew. Math. Phys. 67, 23 (2016)

    MathSciNet  MATH  Google Scholar 

  12. Guo, Y., Wang, Y.J.: Decay of dissipative equations and negative Sobolev spaces. Commun. Partial Differ. Equ. 37, 2165–2208 (2012)

    MathSciNet  MATH  Google Scholar 

  13. Haas, F.: A magnetohydrodynamic model for quantum plasmas. Phys. Plasmas 12(6), 062117 (2005)

    Google Scholar 

  14. Haas, F.: Quantum Plasmas: An Hydrodynamic Approach. Springer, New York (2011)

    Google Scholar 

  15. He, F.Y., Samet, B., Zhou, Y.: Boundedness and time decay of solutions to a full compressible Hall-MHD system. Bull. Malays. Math. Sci. Soc. 41, 2151–2162 (2018)

    MathSciNet  MATH  Google Scholar 

  16. Hoff, D., Zumbrun, K.: Multidimensional diffusion waves for the Navier-Stokes equations of compressible flow. Indiana Univ. Math. J. 44, 603–676 (1995)

    MathSciNet  MATH  Google Scholar 

  17. Hoff, D., Zumbrun, K.: Pointwise decay estimates for multidimensional Navier-Stokes diffusion waves. Z. Angew. Math. Phys. 48, 597–614 (1997)

    MathSciNet  MATH  Google Scholar 

  18. Homann, H., Grauer, R.: Bifurcation analysis of magnetic reconnection in Hall-MHD systems. Physica D 208, 59–72 (2005)

    MathSciNet  MATH  Google Scholar 

  19. Kagei, Y., Kobayashi, T.: On large time behavior of solutions to the compressible Navier-Stokes equations in the half space in \(\mathbb{R}^{3}\). Arch. Ration. Mech. Anal. 165, 89–159 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Kagei, Y., Kobayashi, T.: Asymptotic behavior of solutions of the compressible Navier-Stokes equations on the half space. Arch. Ration. Mech. Anal. 177, 231–330 (2005)

    MathSciNet  MATH  Google Scholar 

  21. Kato, T., Ponce, G.: Commutator estimates and the Euler and Navier-Stokes equations. Commun. Pure Appl. Math. 41, 891–907 (1988)

    MathSciNet  MATH  Google Scholar 

  22. Kobayashi, T., Shibata, Y.: Decay estimates of solutions for the equations of motion of compressible viscous and heat conductive gases in an exterior domain in \(\mathbb{R}^{3}\). Commun. Math. Phys. 200, 621–659 (1999)

    MATH  Google Scholar 

  23. Li, F.C., Yu, H.J.: Optimal decay rate of classical solutions to the compressible magnetohydrodynamic equations. Proc. R. Soc. Edinb. A 141, 109–126 (2011)

    MathSciNet  MATH  Google Scholar 

  24. Li, H., Cheng, M., Yan, W.: Global existence and large time behavior of solutions for compressible quantum magnetohydrodynamics flows in \(\mathbb{T}^{3}\). J. Math. Anal. Appl. 452, 1209–1228 (2017)

    MathSciNet  MATH  Google Scholar 

  25. Liu, T.P., Wang, W.K.: The pointwise estimates of diffusion waves for the Navier-Stokes equations in odd multi-dimensions. Commun. Math. Phys. 196, 145–173 (1998)

    MATH  Google Scholar 

  26. Matsumura, A.: An Energy Method for the Equations of Motion of Compressible Viscous and Heat-Condutive Fluids, 1-16. University of Wisconsin-Madison MRC Technical Summary Report 2194 (1986)

  27. Matsumura, A., Nishida, T.: The initial value problem for the equations of motion of compressible viscous and heat-conductive fluids. Proc. Jpn. Acad., Ser. A, Math. Sci. 55, 337–342 (1979)

    MathSciNet  MATH  Google Scholar 

  28. Matsumura, A., Nishida, T.: The initial value problems for the equations of motion of viscous and heat-conductive gases. J. Math. Kyoto Univ. 20, 67–104 (1980)

    MathSciNet  MATH  Google Scholar 

  29. Mininni, P.D., Gómez, D.O., Mahajan, S.M.: Dynamo action in magnetohydrodynamics and Hall-magnetohydrodynamics. Astrophys. J. 587, 472–481 (2003)

    Google Scholar 

  30. Ponce, G.: Global existence of small solutions to a class of nonlinear evolution equations. Nonlinear Anal. 9, 399–418 (1985)

    MathSciNet  MATH  Google Scholar 

  31. Pu, X.K., Guo, B.L.: Global existence and convergence rates of smooth solutions for the full compressible MHD equations. Z. Angew. Math. Phys. 64, 519–538 (2013)

    MathSciNet  MATH  Google Scholar 

  32. Pu, X.K., Guo, B.L.: Global existence and semiclassical limit for quantum hydrodynamic equations with viscosity and heat conduction. Kinet. Relat. Models 9(1), 165–191 (2015)

    MathSciNet  MATH  Google Scholar 

  33. Pu, X.K., Guo, B.L.: Optimal decay rate of the compressible quantum Navier-Stokes equations. Ann. Appl. Math. 32(3), 275–287 (2016)

    MathSciNet  MATH  Google Scholar 

  34. Pu, X.K., Xu, X.L.: Decay rates of the magnetohydrodynamic model for quantum plasmas. Z. Angew. Math. Phys. 68, 18 (2017)

    MathSciNet  MATH  Google Scholar 

  35. Pu, X.K., Xu, X.L.: Asymptotic behaviors of the full quantum hydrodynamic equations. J. Math. Anal. Appl. 454(1), 219–245 (2017)

    MathSciNet  MATH  Google Scholar 

  36. Shalybkov, D.A., Urpin, V.A.: The Hall effect and the decay of magnetic fields. Astron. Astrophys. 321, 685–690 (1997)

    Google Scholar 

  37. Stein, E.M.: Singular Integrals and Differentiability Properties of Functions. Princeton University Press, Princeton (1970)

    MATH  Google Scholar 

  38. Tan, Z., Wang, H.Q.: Optimal decay rates of the compressible magnetohydrodynamic equations. Nonlinear Anal., Real World Appl. 14, 188–201 (2013)

    MathSciNet  MATH  Google Scholar 

  39. Tao, Q., Yang, Y., Yao, Z.A.: Global existence and exponential stability of solutions for planar compressible Hall-magnetohydrodynamic equations. J. Differ. Equ. 263(7), 3788–3831 (2017)

    MathSciNet  MATH  Google Scholar 

  40. Tao, Q., Yang, Y., Gao, J.C.: A free boundary problem for planar compressible Hall-magnetohydrodynamic equations. Z. Angew. Math. Phys. 69, 15 (2018)

    MathSciNet  MATH  Google Scholar 

  41. Wardle, M.: Star formation and the Hall effect. Astrophys. Space Sci. 292, 317–323 (2004)

    Google Scholar 

  42. Wigner, E.: On the quantum correction for thermodynamic equilibrium. Phys. Rev. 40, 749–759 (1932)

    MATH  Google Scholar 

  43. Xi, X.Y.: Decay rates of the compressible quantum magnetohydrodynamic model. J. Math. Anal. Appl. 475(1), 403–422 (2019)

    MathSciNet  MATH  Google Scholar 

  44. Xi, X.Y., Pu, X.K., Guo, B.L.: Long-time behavior of solutions for the compressible quantum magnetohydrodynamic model in \(\mathbb{R}^{3}\). Z. Angew. Math. Phys. 70, 7 (2019)

    MATH  Google Scholar 

  45. Xi, X.Y., Pu, X.K., Guo, B.L.: Decay rates of the compressible Hall-magnetohydrodynamic model for quantum plasmas. J. Math. Phys. 61(4) (2020). https://doi.org/10.1063/1.5133774

  46. Xiang, Z.Y.: On the Cauchy problem for the compressible Hall-magnetohydrodynamics equations. J. Evol. Equ. 17, 685–715 (2017)

    MathSciNet  MATH  Google Scholar 

  47. Xie, B.Q., Xi, X.Y., Guo, B.L.: Long-time behavior of solutions for full compressible quantum model in \(\mathbb{R}^{3}\). Appl. Math. Lett. 80, 54–58 (2018)

    MathSciNet  MATH  Google Scholar 

  48. Yang, J., Ju, Q.: Global existence of the three-dimensional viscous quantum magnetohydrodynamic model. J. Math. Phys. 55(8), 081501 (2014)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

X. Xi was supported by Introduction of talent research start-up fund at Guangzhou University, NSF of Guangdong Province (No. 2018A030310312), Colleges Innovation Project of Guangdong (No. 2017KQNCX148), and NSFC (No. 11901127). X. Pu was partially supported by NSFC (No. 11871172) and NSF of Guangdong Province (No. 2019A1515012000). The authors will thank the referees for valuable comments and suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Xi.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Xi, X., Pu, X. & Guo, B. Decay Rates of the Compressible Hall-MHD Equations for Quantum Plasmas. Acta Appl Math 170, 459–481 (2020). https://doi.org/10.1007/s10440-020-00342-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10440-020-00342-w

Keywords

Mathematics Subject Classification

Navigation