Skip to main content
Log in

A Novel Flat Friction Stir Spot Welding of Triple Sheet Dissimilar Aluminium Alloys: Analyzing Mechanical Properties and Residual Stresses at Weld Region

  • Original Article
  • Published:
Transactions of the Indian Institute of Metals Aims and scope Submit manuscript

Abstract

In present research work, a novel flat friction stir spot welding was performed on three dissimilar Aluminum alloy sheets (two sheets of AA6082-T6 and one sheet of AA6061-T6). The microstructural features and mechanical properties of joints were investigated at various parameters like tool tilt angle, tool rotational speed, dwell time and tool plunge depth. The optimized value of the response parameter was obtained using Taguchi orthogonal array L27. An increase in tool tilt angle, tool rotational speed and dwell time had improved the microhardness. Optical microscopy, scanning electron microscopy, microhardness tests, lap shear strength test and X-ray diffraction were employed to study the characterization of joints. The present investigations were carried out to correlate the microhardness with microstructural characterization of joints at different welding conditions. It was observed from the XRD analysis that the compressive residual stresses were developed due to reaction for forces exerted by the tool shoulder. Fractograph of joints exhibited mixed mode of fracture with the presence of dimples, transgranular texture and cleavage facets. The comparision of joint efficiency of FFSSW weldment with other variants was done.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  1. Hovorun T P, Berladir K V, Pererva V I, Rudenko S G, Martynov A I, J of Eng Sci 4(2) (2017) 8.

    Google Scholar 

  2. Hirsch J, Mater Trans 52 (2011) 818.

    Article  CAS  Google Scholar 

  3. Thomas W M, Nicholas E D, Needham J C, Murch M G, Temple- Smith P, Dawes C J, United States patent US 5460317A (1991).

  4. Çam G, Pekoglu G, Int J Adv Manuf Technol 91 (2017) 1851.

    Article  Google Scholar 

  5. Zhang Z, Yu Y, Zhao H, Wang X, Metals 9 (6) (2019) 691.

    Article  CAS  Google Scholar 

  6. Shen Z, Ding Y and Gerlich A P. Cri Rev in Solid State and Mater Sci (2019)1.

  7. Haghshenas M, Gerlich A P, Eng Sci Technol Int J 21 (2018) 130.

    Google Scholar 

  8. Paidar M, Olatunji O O, Amirhossein M, Amal S K, and Akbar H, J Manuf Proces 41 (2019) 177.

    Article  Google Scholar 

  9. Shahrabadi A R, Mousavizade S M, Ezatpour H R, and Pouranvari M, Mat Research Express 5(10) (2018) 106519.

    Article  Google Scholar 

  10. Farmanbar N, Mousavizade S M, Elsa M, and Ezatpour H R, Proc Inst Mech Eng Part C: J Mech Eng Sci 16 (2019) 5836.

    Google Scholar 

  11. Saju T P, Narayanan R G, Procedia Manuf 26 (2018) 255.

    Article  Google Scholar 

  12. Heydari F, Amadeh A A, Ojo O O, Hassaniya M H, Tamizifar M, Sadhana 44:73 (2029)

    Article  Google Scholar 

  13. Wiedenhoft, Gabriel A, Amorim, de H J, Rosendo, Souza T D, Tier, Durlo M A, & Afonso R. Mater Res 21(4) (2018).

  14. Hsu T I, Wu L T and Tsai M H, Int J of Adv Manuf Technol, (2018) 1.

  15. Rathinasuriyan C, Senthil Kumar VS, J Mech Sci Technol 31(8) (2017) 3925.

    Article  Google Scholar 

  16. Zhang Z K, Yu Y, Zhang J F, Wang, X J, Metals 7 (2017) 338.

    Article  Google Scholar 

  17. Jia Q, Liu L, Guo W, Peng Y, Zou G, Tian Z, Zhou Y N, Metals 8 ( 2018) 48.

    Article  Google Scholar 

  18. Sitthipong S,Towatana P, Meengam C, Chainarong S, and Muangjunburee P, Eng. J 22 (2018) 51.

    Article  CAS  Google Scholar 

  19. Sun Y, Fujii H, Zhu S, Guan S, J Mater Process Technol 264 (2018) 414.

    Article  Google Scholar 

  20. Ahmed I I, Sherry A H, Adebisi J A, Abdulkareem S, J King Saud Univ Eng Sci 30 (2018) 183

    Google Scholar 

  21. Enami M, Farahani M. and Farhang M, Int J Adv Manuf Technol 101 (2019), 3093.

    Article  Google Scholar 

  22. Yazdi S R, Beidokhti B and Haddad S M, J Mater Proc Technol 267 (2019) 44.

    Article  CAS  Google Scholar 

  23. Saini N, Pandey C, Thapliyal S et al, Silicon 10 (2018) 1979.

    Article  CAS  Google Scholar 

  24. Saini N, Pandey C, & Dwivedi D K, Proc Ins Mech Eng, Part E: J Proc Mech Eng 232(6) (2018) 696.

    CAS  Google Scholar 

  25. Deepan, Pandey C, Saini N, Mahapatra M M, Mulik R S, J Brazil Soc Mech Sci Eng 39(11) (2017) 4613.

  26. Aydin H, Tuncel O, Umur Y, Tutar M, & Bayram A, Ind J Eng Mater Sci 24 (2017) 215.

    CAS  Google Scholar 

  27. Huang Y, Xie Y, Meng X, & Li J, Materials Science and Engineering: A 740 (2019) 211.

    Google Scholar 

  28. Ramaswamy A, Malarvizhi S, & Balasubramanian V, J Mech Behav Mater 28(1) (2019) 135.

    Article  CAS  Google Scholar 

  29. Khaki S, Heidari A, Kolahdooz A, ADMT J 12(3) (2019) 25.

    Google Scholar 

  30. Elnabi M M A, Elshalakany A B, Abdel-Mottaleb M M, Osman T A, Mokadem A, J Mater ResTechnol 8 (2019) 1684.

    Google Scholar 

  31. Bilici M K, COPPER B, Bozkurt Y, & CALIS İ,Pamu Univ J Eng Sci22 (1) (2016) 17.

    Article  Google Scholar 

  32. Ross P J, Taguchi techniques for quality engineering (1988).

  33. Li G, Zhou L, Zhou W, Song X, & Huang Y, J Mater Res Technol 8(3) (2019) 2613.

    Article  CAS  Google Scholar 

  34. Ebrahimzadeh V, Paidar M, Safarkhanian M A and Ojo O O, Int J Adv Manuf Technol 96 (2018) 1237.

    Article  Google Scholar 

  35. N Muhayat, B P Putra and Triyono, Matec Web Conf 269 (2019) 01005.

    Article  CAS  Google Scholar 

  36. Lim Y S , Kim S H, and Lee K J, Adv in Mater Sci and Eng 2018 (2018)

  37. Ahmed I I, Sherry A H, et al, J King Saud UniV Eng Sci 30(2) (2018) 183.

    Google Scholar 

  38. He W, Liu J, Hu W, Wang G, & Chen W, High Temp Mater Proc 38 (2019) 662.

    Article  CAS  Google Scholar 

  39. Aloor R B, Ramakrishna H V and Musalammagri N, J Min Mater Charact Eng 7 (2019)150.

    CAS  Google Scholar 

  40. Pandey C, Mahapatra M M, Kumar P et al, Eng Fail Anal 96 (2019) 158.

    Article  CAS  Google Scholar 

  41. Pandey C, Saini N, Mahapatra M M, & Kumar P, Eng Fail Anal 71 (2017)131.

    Article  CAS  Google Scholar 

  42. Panwar N, & Chauhan A, J Mater Res Technol 8(1) (2019) 660.

    Article  CAS  Google Scholar 

  43. Dedeoğlu O, Güler O H, J Manuf Mater Proc 3(1) (2019) 8.

    Google Scholar 

  44. Zhang L J Z, Shan P, Luo Z, Feng and Ling, Welding Journal 95 (2016) 479.

    Google Scholar 

Download references

Acknowledgements

The authors acknowledge MGMCoET, Noida for providing labs for sample preparation and testing of samples during this work. The authors also wish to sincerely thank to Prof Neeraj Khare (Coordinator, NRF, IIT Delhi), for their support in XRD and SEM analysis. We would like to thank Dr Ruchika Pal at AIRF, JNU, New Delhi and for support extended during SEM analysis.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Jambhale.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jambhale, S., Kumar, S. & Kumar, S. A Novel Flat Friction Stir Spot Welding of Triple Sheet Dissimilar Aluminium Alloys: Analyzing Mechanical Properties and Residual Stresses at Weld Region. Trans Indian Inst Met 73, 2205–2220 (2020). https://doi.org/10.1007/s12666-020-02025-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12666-020-02025-4

Keywords

Navigation