Skip to main content
Log in

Photoactive Widegap Oxide Doped ZnO with Non-stoichiometric Matrix: Aspects of Formation

  • Original Paper
  • Published:
Topics in Catalysis Aims and scope Submit manuscript

Abstract

XRD, ESR, TRMC and UV–visible spectroscopy are used for the description of characteristics of investigated systems and determination of forming structure mechanism in Al, Zr or Ce doped non-stoichiometric ZnO1−x. It was shown the Al and Zr ions substitute the lattice Zn2+ in the ZnO matrix, and as a result, the donor's levels form in ZnO bandgap and acceptor’s level of zinc vacancy. Last level is a trap of phogenerate holes in material and it allows to delay photocatalytic actvity Al- and Zr-doped ZnO. Ce ions incorporate as interstiallite ions or segregate on crystal surface that leads to appearance the f-levels in the bandgap of ZnO, and as a result, the cerium ion will trap for electron. It decreases electron lifetime or increases of hole lifetime and also if cerium ion segregates on the ZnO surface the set of reactions (Ce4+ + e- = Ce3+, Ce3+ + O2 = Ce4+ + O2) may occur. It leads to form additional reactive oxygen species, in particular, super-anion radicals (O2, ROS) that improve the activity of the material. As a result, the increasing of phenol degradation by 30% compared to pure ZnO may be achieved at the choice of Ce-doped ZnO catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Ray C, Pal T (2017) Recent advances of metal–metal oxide nanocomposites and their tailored nanostructures in numerous catalytic applications. J Mater Chem A 5(20):9465–9487

    Article  CAS  Google Scholar 

  2. Liu X, Iocozzia J, Wang Y, Cui X, Chen Y, Zhao S, Li Z, Lin Z (2017) Noble metal–metal oxide nanohybrids with tailored nanostructures for efficient solar energy conversion, photocatalysis and environmental remediation. Energy Environ Sci 10:402–434

    Article  CAS  Google Scholar 

  3. Das S, Dowding JM, Klump KE, McGinnis JF, Self W, Seal S (2013) Cerium oxide nanoparticles: applications and prospects in nanomedicine. Nanomedicine 8(9):1483–1508

    Article  CAS  Google Scholar 

  4. Dunnick KM, Pillai R, Pisane KL, Stefaniak AB, Sabolsky EM, Leonard SS (2015) The effect of cerium oxide nanoparticle valence state on reactive oxygen species and toxicity. Biol Trace Elem Res 166(1):96–107

    Article  CAS  Google Scholar 

  5. Wang X, Zhang D, Li Y, Tang D, Xiao Y, Liu Yu, Huo Q (2013) Self-doped Ce3+ enhanced CeO2 host matrix for energy transfer from Ce3+ to Tb3+. RSC Adv 3(11):3623–3630

    Article  CAS  Google Scholar 

  6. Gusain R, Gupta K, Joshi P, Chatri O (2019) Adsorptive removal and photocatalytic degradation of organic pollutants using metal oxides and their composites: a comprehensive review. Adv Colloid Interface Sci 272(1–23):102009

    Article  CAS  Google Scholar 

  7. Daghrir R, Drogui P, Robert D (2013) Modified TiO2 For Environmental Photocatalytic Applications: A Review. Ind Eng Chem Res 52(10):3581–3599

    Article  CAS  Google Scholar 

  8. Yen CC, Wang DY, Chan LS, Shih HC (2011) Characterization and photocatalytic activity of Fe- and N-co-deposited TiO2 and first-principles study for electronic structure. J Solid State Chem 184:2053–2060

    Article  CAS  Google Scholar 

  9. Shinde DR, Tambade PS, Chaskar MG, Gadave KM (2017) Photocatalytic degradation of dyes in water by analytical reagent grades ZnO, TiO2 and SnO2: a comparative study. Drink Water Eng Sci 10:109–117

    Article  CAS  Google Scholar 

  10. Yi Z, Xu X, Duan X, Zhu W, Zhou Z, Fan X (2011) Photocatalytic activity and stability of ZnO particles with different morphologies. Rare Met 30:183–187

    Article  CAS  Google Scholar 

  11. Mikhailov MM, Neshchimenko VV, Dedov NV, Chundong L, Shiu H (2011) Proton and electron irradiation induced changes in the optical properties of ZnO pigments modified with ZrO2 and Al2O3 nanopowders. J. Surface Investigation X-ray Synchrotron and Neutron Techniques 5(6): 29–39.

  12. Rekh K, Nirmal M, Nair MG, Anukaliani A (2010) Structural, optical, photocatalytic and antibacterial activity of zinc oxide and manganese doped zinc oxide nanoparticles. Phys B 405:3180–3185

    Article  Google Scholar 

  13. Joseph DP, Venkateswaran C (2011) Bandgap engineering in ZnO by doping with 3d transition metal ions. J Atomic Mol Opt Phys 270540:7

    Google Scholar 

  14. Vijayabalan A, Sivakumar A, Babu NS, Amalorpavadoss A (2019) Photocatalytic Activity of Zr Doped ZnO and Its Morphology. Int J Bioorganic Chem 4(1):14–18

    Article  Google Scholar 

  15. Du P, Su T, Luo X, Xie X, Qin Z, Ji H (2019) Zr-modified ZnO for the selective oxidation of cinnamaldehyde to benzaldehyde. Catalysts 9(1–12):716

    Article  Google Scholar 

  16. Noh JY, Kim H, Kim Y-S, Park HC (2013) Electron doping limit in Al-doped ZnO by donor-acceptor interactions. J Appl Phys 113(1–5):153703

    Article  Google Scholar 

  17. Ahmad I, Akhtar MS, Ahmed E, Ahmad M (2019) Aluminium and cerium co-doped ZnO nanoparticles: Facile and inexpensive synthesis and visible light photocatalytic performances. J Rare Earths. https://doi.org/10.1016/j.jre.2019.11.006

    Article  Google Scholar 

  18. Elkar T, Mzabi N, Ben Hassine M, Gemeiner P, Dkhil B, Guermazi S, Guermazi H (2018) Structural and optical investigation of (V, Al) doped and co-doped ZnO nanopowders: Tailored visible luminescence for white light emitting diodes. Superlattices Microstruct 122:349–361

    Article  CAS  Google Scholar 

  19. George A, Sharma SK, Chawla S, Malik MM, Qureshi MS (2011) Detailed of X-ray diffraction and photoluminescence studies of Ce doped ZnO nanocrystals. J Alloys Compds 509:5942–5946

    Article  CAS  Google Scholar 

  20. Cerrato E, Gionc C, Paganin MCR, Giamello E, Pacchioni EAG (2018) Origin of visible light photo-activity of the CeO2/ZnO hetero-junction. ACS Appl Energy Mater 1(8):4247–4260

    Article  CAS  Google Scholar 

  21. Barret CS, Massalski TB (1980) Structures of metals: crystallographic methods, principles and data. Perga Mon Press, Oxford

    Google Scholar 

  22. Colbeau-Justin C, Hunst M, Huguenin D (2003) Structural influence on charge-carrier lifetimes in TiO2 powders studied by microwave absorption. J Mater Sci 98:2428–2437

    Google Scholar 

  23. Matusiewicz H, Stanisz E (2012) Evaluation of the catalyzed photo-cold vapour generation for determination of mercury by AAS. J Braz Chem Soc 23(2):247–257

    CAS  Google Scholar 

  24. Danilenko I, Gorban O, Maksimchuk P, Viagin O, Malyukin Y, Gorban S, Volkova G, Glasunova V, Mendez-Medrano MG, Colbeau-Justin C, Konstantinova T, Lyubchyk S (2019) Photocatalytic activity of ZnO nanopowders: the role of production techniques in the formation of structural defects. Catal Today 328:99–104

    Article  CAS  Google Scholar 

  25. Nikitenko VA, Tarkpea KE, Mukhin SV, Kuzmina IP (1997) Spectroscopy of the point defects in zinc oxide. Inorg Mater 33:189–191

    CAS  Google Scholar 

  26. Vanheusden K, Warren WL, Seager CH, Tallant DR, Voigt JA (1996) Correlation between photoluminescence and oxygen vacancies in ZnO phospors. Appl Phys Lett 68(3):403–405

    Article  CAS  Google Scholar 

  27. Galland D, Herve A (1974) Temperature dependence of the ESR spectrum of the zinc vacancy in ZnO. Solid State Commun 14:953–956

    Article  CAS  Google Scholar 

  28. Saravanan R, Agarwal S, Kumar Gupta V, Khan MM, Gracia F, Mosquera E, Narayanan V, Stephen A (2018) Line defect Ce3+ induced Ag/CeO2/ZnO nanostructure for visible-light photocatalytic activity. J PhotoChem PhotoBiol A 353:499–507

    Article  CAS  Google Scholar 

  29. Grabowska E, Reszszynska J, Zaleska A (2012) Mechanism of phenol photodegradation in the presence of pure and modified-TiO2: a review. Water Res 46:5453–5471

    Article  CAS  Google Scholar 

  30. Tao Y, Cheng ZL, Ting KE, Yin XJ (2013) Photocatalytic degradation of phenol using a nanocatalyst: the mechanism and kinetics. J Catal ID 364275:1-6.

  31. Murcia Mesa JJ, García Arias JA, Rojas HA, Cárdenas Espinosa OE (2020) Photocatalytic degradation of phenol, catechol and hydroquinone over Au-ZnO nanomaterials. Rev Fac Ing Univ Antioquia 94:24–32

    Google Scholar 

  32. Brooms TJ, Onyango MS, Ochieng A (2017) Photodegradation of phenol using TiO2, ZnO and TiO2/ZnO catalysts in an annular reactor. J Water Chem Technol 39(3):155–160

    Article  Google Scholar 

  33. Andriantsiferana C, MohamedE F, Delmas H (2015) Sequential adsorption—photocatalytic oxidation process for wastewater treatment using a composite material TiO2/activated carbon. Environ Eng Res 20(2):181–189

    Article  Google Scholar 

  34. Zhou K, Zhang J, Xiao Y, Zhao Z, Zhang M, Wang L, Zhang X, Zhou C (2020) High-efficiency adsorption of and competition between phenol and hydroquinone in aqueous solution on highly cationic amino-poly(vinylamine)functionalized GO-(o-MWCNTs) magnetic nanohybrids. Chem Eng J 389:124223

    Article  CAS  Google Scholar 

  35. Damatov D, Laga SM, Mader EA, Peng J, Agarwal RG, Mayer JM (2018) Redox Reactivity of colloidal nanoceria and use of optical spectra as an in situ monitor of Ce oxidation states. Inorg Chem 57:14401–14408

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the H2020-MSCA-RISE-2015 Programme, the project N690968 NANOGUARD2AR and national grant N 47/19H of program NAS of Ukraine for financial support of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Oksana Gorban.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gorban, O., Danilenko, I., Gorban, S. et al. Photoactive Widegap Oxide Doped ZnO with Non-stoichiometric Matrix: Aspects of Formation. Top Catal 64, 797–805 (2021). https://doi.org/10.1007/s11244-020-01301-3

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11244-020-01301-3

Navigation