Skip to main content
Log in

Phosphorus magnetic resonance spectroscopy and fatigue in multiple sclerosis

  • Neurology and Preclinical Neurological Studies - Original Article
  • Published:
Journal of Neural Transmission Aims and scope Submit manuscript

Abstract

Fatigue stands among the most debilitating multiple sclerosis (MS) manifestations. Several pathophysiological mechanisms have been proposed at its origin. However, unmet needs still exist, and further investigations are required to better understand and manage this complaint. A new imaging modality—the phosphorous magnetic resonance spectroscopy (31P-MRS)—might help studying fatigue by allowing the measurement of energy metabolites of various cerebral regions. Therefore, this work aimed to explore the association between fatigue and brain energy status. Thirty MS patients with progressive disease forms completed the study. Their sociodemographic and clinical data including fatigue and disability scores [i.e., Fatigue Severity Scale (FSS) and Expanded Disability Status Scale (EDSS)] were collected. 31P-MRS spectra of (1) bilateral frontoparietal area and (2) centrum semiovale normal appearing white matter (NAWM) were obtained. Percentages of phosphocratine and β-adenosine triphosphate (β-ATP) were calculated. FSS scores were found to be directly correlated with the frontoparietal β-ATP % (p < 0.05). However, there were no significant correlations between FSS scores and NAWM energy metabolites or clinical data (i.e., age, EDSS scores or disease duration). These findings point toward the existence of a link between fatigue severity and the amount of cerebral ATP metabolites. Such a link might reflect either a high production or low utilization of ATP, both of which were paralleled with increased fatigue perception. While the former would be due to a redistribution of ion channels along demyelinated axons and subsequent changes in mitochondrial activity; the latter could be interpreted in the light of neuronal loss which would lead to a decrease in ATP utilization and accumulation of its metabolites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Similar content being viewed by others

References

  • Ayache SS, Chalah MA (2017) Fatigue in multiple sclerosis—insights into evaluation and management. Neurophysiol Clin Clin Neurophysiol 47:139–171

    Google Scholar 

  • Bakshi R, Shaikh ZA, Miletich RS et al (2000) Fatigue in multiple sclerosis and its relationship to depression and neurologic disability. Mult Scler 6:181–185

    CAS  PubMed  Google Scholar 

  • Bakshi R, Miletich RS, Kinkel PR et al (1998) High-resolution fluorodeoxyglucose positron emission tomography shows both global and regional cerebral hypometabolism in multiple sclerosis. J Neuroimaging 8:228–234

    CAS  PubMed  Google Scholar 

  • Barcelos IP, Troxell RM, Graves JS (2019) Mitochondrial dysfunction and multiple sclerosis. Biology (Basel) 8:37

    Google Scholar 

  • Baumgartner A, Frings L, Schiller F et al (2018) Regional neuronal activity in patients with relapsing remitting multiple sclerosis. Acta Neurol Scand 138:466–474

    CAS  PubMed  Google Scholar 

  • Bélanger M, Allaman I, Magistretti PJ (2011) Brain energy metabolism: focus on astrocyte-neuron metabolic cooperation. Cell Metab 14:724–738

    Google Scholar 

  • Bergamaschi R, Romani A, Versino M et al (1997) Clinical aspects of fatigue in multiple sclerosis. Funct Neurol 12:247–251

    CAS  PubMed  Google Scholar 

  • Bisecco A, Nardo F, Docimo R et al (2018) Fatigue in multiple sclerosis: the contribution of resting-state functional connectivity reorganization. Mult Scler 24:1696–1705

    PubMed  Google Scholar 

  • Calabrese M, Rinaldi F, Grossi P et al (2010) Basal ganglia and frontal/parietal cortical atrophy is associated with fatigue in relapsing-remitting multiple sclerosis. Mult Scler 16:1220–1228

    PubMed  Google Scholar 

  • Chalah MA, Kauv P, Créange A et al (2019) Neurophysiological, radiological and neuropsychological evaluation of fatigue in multiple sclerosis. Mult Scler Relat Disord 28:145–152

    PubMed  Google Scholar 

  • Chalah MA, Riachi N, Ahdab R et al (2015) Fatigue in multiple sclerosis: neural correlates and the role of non-invasive brain stimulation. Front Cell Neurosci 9

  • Compston A, Coles A (2008) Multiple sclerosis. Lancet Lond Engl 372:1502–1517

    CAS  Google Scholar 

  • Cruz Gómez ÁJ, Ventura Campos N, Belenguer A et al (2013) Regional brain atrophy and functional connectivity changes related to fatigue in multiple sclerosis. PLoS ONE 8:e77914

    PubMed  PubMed Central  Google Scholar 

  • Derache N, Grassiot B, Mézenge F et al (2013) Fatigue is associated with metabolic and density alterations of cortical and deep gray matter in Relapsing-Remitting-Multiple Sclerosis patients at the earlier stage of the disease: a PET/MR study. Mult Scler Relat Disord 2:362–369

    PubMed  Google Scholar 

  • Hattingen E, Magerkurth J, Pilatus U et al (2011) Combined 1H and 31P spectroscopy provides new insights into the pathobiochemistry of brain damage in multiple sclerosis. NMR Biomed 24:536–546

    CAS  PubMed  Google Scholar 

  • Heesen C (2006) Fatigue in multiple sclerosis: an example of cytokine mediated sickness behaviour? J Neurol Neurosurg Psychiatry 77:34–39

    CAS  PubMed  PubMed Central  Google Scholar 

  • Husted CA, Goodin DS, Hugg JW et al (1994) Biochemical alterations in multiple sclerosis lesions and normal-appearing white matter detected by in vivo 31P and 1H spectroscopic imaging. Ann Neurol 36:157–165

    CAS  PubMed  Google Scholar 

  • Induruwa I, Constantinescu CS, Gran B (2012) Fatigue in multiple sclerosis—a brief review. J Neurol Sci 323:9–15

    PubMed  Google Scholar 

  • Jaeger S, Paul F, Scheel M et al (2019) Multiple sclerosis-related fatigue: altered resting-state functional connectivity of the ventral striatum and dorsolateral prefrontal cortex. Mult Scler 25:554–564

    PubMed  Google Scholar 

  • Jansen D, Zerbi V, Janssen CI et al (2013) A longitudinal study of cognition, proton MR spectroscopy and synaptic and neuronal pathology in aging wild-type and AβPPswe-PS1dE9 mice. PLoS ONE 8:e63643

    CAS  PubMed  PubMed Central  Google Scholar 

  • Krupp LB, LaRocca NG, Muir-Nash J et al (1989) The fatigue severity scale. Application to patients with multiple sclerosis and systemic lupus erythematosus. Arch Neurol 46:1121–1123

    CAS  PubMed  Google Scholar 

  • Latini F, Larsson E-M, Ryttlefors M (2017) Rapid and accurate MRI segmentation of peritumoral brain edema in meningiomas. Clin Neuroradiol 27:145–152

    CAS  PubMed  Google Scholar 

  • Lin G, Chung YL (2014) Current opportunities and challenges of magnetic resonance spectroscopy, positron emission tomography, and mass spectrometry imaging for mapping cancer metabolism in vivo. Biomed Res Int 2014:625095

    PubMed  PubMed Central  Google Scholar 

  • Lucchinetti C, Brück W, Parisi J et al (2000) Heterogeneity of multiple sclerosis lesions: implications for the pathogenesis of demyelination. Ann Neurol 47:707–717

    CAS  PubMed  Google Scholar 

  • Mahad DH, Trapp BD, Lassmann H (2015) Pathological mechanisms in progressive multiple sclerosis. Lancet Neurol 14:183–193

    CAS  PubMed  Google Scholar 

  • Mahad DJ, Ziabreva I, Campbell G et al (2009) Mitochondrial changes within axons in multiple sclerosis. Brain 132:1161–1174

    PubMed  PubMed Central  Google Scholar 

  • Mainero C, Faroni J, Gasperini C et al (1999) Fatigue and magnetic resonance imaging activity in multiple sclerosis. J Neurol 246:454–458

    CAS  PubMed  Google Scholar 

  • Newland P, Starkweather A, Sorenson M (2016) Central fatigue in multiple sclerosis: a review of the literature. J Spinal Cord Med 39:386–399

    PubMed  PubMed Central  Google Scholar 

  • Nourbakhsh B, Julian L, Waubant E (2016) Fatigue and depression predict quality of life in patients with early multiple sclerosis: a longitudinal study. Eur J Neurol 23:1482–1486

    CAS  PubMed  Google Scholar 

  • Patejdl R, Penner IK, Noack TK et al (2016) Multiple sclerosis and fatigue: a review on the contribution of inflammation and immune-mediated neurodegeneration. Autoimmun Rev 15:210–220

    CAS  PubMed  Google Scholar 

  • Pokryszko-Dragan A, Bladowska J, Zimny A et al (2014) Magnetic resonance spectroscopy findings as related to fatigue and cognitive performance in multiple sclerosis patients with mild disability. J Neurol Sci 339:35–40

    PubMed  Google Scholar 

  • Polman CH, Reingold SC, Banwell B et al (2011) Diagnostic criteria for multiple sclerosis: 2010 revisions to the McDonald criteria. Ann Neurol 69:292–302

    PubMed  PubMed Central  Google Scholar 

  • Roelcke U, Kappos L, Lechner-Scott J et al (1997) Reduced glucose metabolism in the frontal cortex and basal ganglia of multiple sclerosis patients with fatigue: a 18F-fluorodeoxyglucose positron emission tomography study. Neurology 48:1566–1571

    CAS  PubMed  Google Scholar 

  • Sajja BR, Wolinsky JS, Narayana PA (2009) Proton magnetic resonance spectroscopy in multiple sclerosis. Neuroimaging Clin N Am 19:45–58

    PubMed  PubMed Central  Google Scholar 

  • Salibi NM, Brown MA (1998) Clinical MR spectroscopy: first principles. Wiley-Liss, New York

    Google Scholar 

  • Santos-Díaz A, Noseworthy MD (2020) Phosphorus magnetic resonance spectroscopy and imaging (31P-MRS/MRSI) as a window to brain and muscle metabolism: a review of the methods. Biomed Signal Process Control 60:101967

    Google Scholar 

  • Sepulcre J, Masdeu JC, Goñi J et al (2009) Fatigue in multiple sclerosis is associated with the disruption of frontal and parietal pathways. Mult Scler 15:337–344

    CAS  PubMed  Google Scholar 

  • Stanley JA, Raz N (2018) Functional magnetic resonance spectroscopy: the "new" MRS for cognitive neuroscience and psychiatry research. Front Psychiatry 9:76

    PubMed  PubMed Central  Google Scholar 

  • Steen C, D’haeseleer M, Hoogduin JM et al (2013) Cerebral white matter blood flow and energy metabolism in multiple sclerosis. Mult Scler 19:1282–1289

    PubMed  Google Scholar 

  • Steen C, Wilczak N, Hoogduin JM et al (2010) Reduced creatine kinase B activity in multiple sclerosis normal appearing white matter. PLoS ONE 5:e10811

    PubMed  PubMed Central  Google Scholar 

  • Tartaglia MC, Narayanan S, Francis SJ et al (2004) The relationship between diffuse axonal damage and fatigue in multiple sclerosis. Arch Neurol 61:201–207

    PubMed  Google Scholar 

  • Téllez N, Alonso J, Río J et al (2008) The basal ganglia: a substrate for fatigue in multiple sclerosis. Neuroradiology 50:17–23

    PubMed  Google Scholar 

  • Téllez N, Río J, Tintoré M et al (2005) Does the Modified Fatigue Impact Scale offer a more comprehensive assessment of fatigue in MS? Mult Scler 11:198–202

    PubMed  Google Scholar 

  • van der Knaap MS, Valk J (2005) Magnetic resonance of myelination and myelin disorders [Internet]. Springer, Berlin

    Google Scholar 

  • van der Werf SP, Jongen PJ, Lycklama À, Nijeholt GJ et al (1998) Fatigue in multiple sclerosis: interrelations between fatigue complaints, cerebral MRI abnormalities and neurological disability. J Neurol Sci. 160:164–170

    PubMed  Google Scholar 

  • van Horssen J, Witte ME, Ciccarelli O (2012) The role of mitochondria in axonal degeneration and tissue repair in MS. Mult Scler 18:1058–1067

    PubMed  Google Scholar 

  • Witte ME, Bø L, Rodenburg RJ et al (2009) Enhanced number and activity of mitochondria in multiple sclerosis lesions. J Pathol 219:193–204

    PubMed  Google Scholar 

  • Zaini WH, Giuliani F, Beaulieu C et al (2016) Fatigue in Multiple Sclerosis: assessing Pontine Involvement Using Proton MR Spectroscopic Imaging. PLoS ONE 11:e0149622

    PubMed  PubMed Central  Google Scholar 

  • Zambonin JL, Zhao C, Ohno N et al (2011) Increased mitochondrial content in remyelinated axons: implications for multiple sclerosis. Brain 134:1901–1913

    PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Kauv.

Ethics declarations

Conflict of interest

AC gave expert testimony for CSL Behring, Novartis, received grants from Biogen, Novartis, CSL Behring, GE Neuro, Octapharma, and gave lectures for Genzyme. SSA declares having received travel grants or compensation from Genzyme, Biogen, Novartis and Roche. The remaining authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kauv, P., Chalah, M.A., Créange, A. et al. Phosphorus magnetic resonance spectroscopy and fatigue in multiple sclerosis. J Neural Transm 127, 1177–1183 (2020). https://doi.org/10.1007/s00702-020-02221-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00702-020-02221-y

Keywords

Navigation