Skip to main content

Advertisement

Log in

Evidence of freshened groundwater below a tropical fringing reef

Mise en évidence d’eaux souterraines peu salées sous un récif frangeant tropical

Evidencias de agua subterránea dulce por debajo de un arrecife tropical

热带边缘礁下的地下淡水证据

Evidência de águas subterrâneas dulcificadas abaixo de um recife tropical em franja

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

Submarine groundwater discharge (SGD) is widely acknowledged as a key driver of environmental change in tropical island coral reefs. Previous work has addressed SGD and groundwater-reef interactions at isolated submarine springs; however, there are still many outstanding questions about the mechanisms and distribution of groundwater discharge to reefs. To understand how groundwater migrates to reefs, a series of offshore 222Rn (radon) and submarine electrical resistivity (ER) surveys were performed on the tropical volcanic island of Mo’orea, French Polynesia. These surveys suggest that fresher water underlies the fringing reef, apparently confined by a <1-m-thick low-permeability layer referred to as a reef flat plate. Reef flat plates have been documented elsewhere in tropical reefs as thin, laterally continuous limestone units that form through the super-saturation of calcium carbonate in the overlying marine waters. In other tropical reefs, the reef flat plate is underlain by a highly permeable karstic limestone formation, but the submarine reef geology on Mo’orea is still uncertain. Numerical modeling of two-dimensional reef transects and SGD quantifications, based on water budget and radon/salinity mass balance, support the confining nature of the reef flat plates and indicate important implications for SGD impacts to tropical reefs. Except where incised by streams or local springs, reef flat plates may route SGD to lagoons or to the reef crest 100s of meters offshore. Because groundwater can transport pollutants, nutrients, and low pH waters, the reef flat plate may play an important role in the spatial patterns of reef ecology and coastal acidification.

Résumé

L’émergence d’eaux souterraines sous-marines (EESSM) est largement reconnue comme un des moteurs principaux des changements environnementaux dans les récifs coralliens d’iles tropicales. Des travaux précédents se sont intéressés aux EESSM et aux interactions entre récifs et eaux souterraines pour des sources sous-marines isolées; toutefois, il reste de nombreuses questions en suspens sur les mécanismes et la distribution des émergences d’eaux souterraines dans ces récifs. Pour comprendre comment les eaux souterraines migrent vers les récifs, une série de mesures de 222Rn (radon) en mer et de résistivité électrique sous-marine a été mise en œuvre sur l’ile volcanique tropicale de Mo’orea, en Polynésie française. Ces relevés suggèrent que de l’eau peu salée gît sous le récif frangeant, apparemment confinée sous une couche de faible perméabilité, d’épaisseur < 1 m, correspondant au plateau récifal. Les plateaux du récif ont été documentés par ailleurs dans des récifs tropicaux comme étant de minces unités calcaires continues qui se constituent par sursaturation des carbonates de calcium dans les eaux marines sus-jacentes. Dans d’autres récifs tropicaux, le plateau récifal est recouvert par une formation calcaire karstique très perméable, mais la géologie de la partie sous-marine du récif de Mo’orea reste incertaine. La modélisation numérique de transects du récif à deux dimensions et de la quantification des EESSM, basée sur le bilan de l’eau et le bilan de masses radon/salinité, confirment le caractère confiné des plateaux récifaux et indiquent d’importantes conséquences des impacts des EESSM sur les récifs tropicaux. En dehors des zones d’incision par les cours d’eau ou par les sources locales, les plateaux récifaux peuvent conduire les EESSM vers les lagons ou la crête du récif, à des 100aines de mètres en mer. Du fait que les eaux souterraines peuvent transporter des polluants, des nutriments et des eaux à faible pH, le plateau récifal peut jouer un rôle important dans les modèles spatiaux d’écologie récifale et d’acidification de la côte.

Resumen

La descarga submarina de aguas subterráneas (SGD) es ampliamente reconocida como un determinante clave del cambio ambiental en los arrecifes de coral de las islas tropicales. En trabajos anteriores se han abordado la SGD y las interacciones entre las aguas subterráneas y los arrecifes en manantiales submarinos aislados; sin embargo, todavía quedan muchas cuestiones pendientes sobre los mecanismos y la distribución de la descarga de aguas subterráneas en los arrecifes. Para comprender cómo migran las aguas subterráneas a los arrecifes, se realizaron una serie de estudios de 222Rn (radón) en alta mar y de resistividad eléctrica submarina (RE) en la isla volcánica tropical de Mo’orea, en la Polinesia Francesa. Estos estudios sugieren que el agua dulce subyace en el arrecife circundante, aparentemente confinado por una capa de baja permeabilidad de <1 m de espesor denominada placa plana de arrecife. Las placas planas de arrecife han sido documentadas en otros lugares de los arrecifes tropicales como unidades de caliza delgadas y lateralmente continuas que se forman a través de la supersaturación de carbonato de calcio en las aguas marinas superficiales. En otros arrecifes tropicales, la placa plana del arrecife está subyacente por una formación de caliza kárstica altamente permeable, pero la geología del arrecife submarino en Mo’orea es todavía incierta. La modelización numérica de perfiles bidimensionales de arrecifes y las cuantificaciones de SGD, basadas en el balance hídrico y el balance de masa de radón/salinidad, apoyan la naturaleza confinada de las placas planas de arrecifes e indican importantes implicancias para los impactos de SGD en los arrecifes tropicales. Excepto cuando son cortadas por arroyos o manantiales locales, las placas planas del arrecife pueden conducir el SGD a lagunas o a la cresta del arrecife a cientos de metros de la costa. Debido a que el agua subterránea puede transportar contaminantes, nutrientes y aguas de bajo pH, la placa plana del arrecife puede jugar un papel importante en los patrones espaciales de la ecología del arrecife y la acidificación costera.

摘要

海底地下水排泄(SGD)被公认为热带岛屿珊瑚礁环境变化的主要驱动力。先前的工作研究了孤立海底泉水的SGD和地下水-礁石的相互作用;但是,关于地下水向礁石排泄的机理和分布仍然存在许多未解决的问题。为了了解地下水如何迁移到礁石上,在法属Polynesia的Mo’orea热带火山岛上进行了一系列近海222Rn(氡)和海底电阻率(ER)调查。这些调查表明,在礁石下面是淡水,显然是由<1 m厚的低渗透层(称为礁石平板)所隔开。在热带珊瑚礁的其他地方,珊瑚礁平板被记录为薄的、横向连续的石灰岩单元,它们是通过上覆海水中碳酸钙的过饱和而形成的。在其他热带珊瑚礁中,珊瑚礁平板位于高渗透性的岩溶石灰岩层之下,但Mo’orea岛的海底珊瑚礁地质条件仍然不确定。基于水均衡和氡 /盐度质量平衡的二维礁样带和SGD定量化的数值模型,证实了礁石平板的局限性,并指出了SGD对热带礁石的重要影响。除非受到溪流或当地温泉的影响,否则礁石平板可将SGD导向咸水湖或离岸100米的礁脊。由于地下水可以输运污染物,养分和低pH值的水,因此礁石平板可能在礁石生态系统和沿海酸化的空间格局中发挥重要作用。

Resumo

Descarga submarina de águas subterrâneas (DSAS) é amplamente reconhecida como um fator chave para a mudança ambiental em recifes de corais em ilhas tropicais. Trabalhos anteriores endereçaram a DSAS e as interações entre corais e águas subterrâneas em nascentes submarinas isoladas; entretanto, existem ainda muitas perguntas excepcionais sobre os mecanismos e a distribuição da descarga de águas subterrâneas para os recifes. Para entender como as águas subterrâneas migram para os recifes, uma serie de pesquisas de resistividade elétricas (RE) submarinas e de 222Rn (Radônio) no mar foram feitas na ilha vulcânica tropical de Mo’orea na Polinésia Francesa. Essas pesquisas sugerem que existe água doce sob o recife franjado, aparentemente confinado por uma camada de baixa permeabilidade com espessura de <1m, referida como a placa plana do recife. Placas planas de recifes foram documentadas em outros lugares em recifes tropicais como unidades calcárias contínuas lateralmente finas que se formam através da super saturação do carbonato de cálcio na sobreposição das águas marinhas. Em outros recifes tropicais, a placa plana do recife é sobreposta por uma formação calcária cárstica altamente permeável, mas a geologia de recifes marinhos no Mo’orea é ainda incerta. Modelagem numérica do corte transversal bidimensional do recife e quantificações da DSAS, baseada no balanço hídrico e no balanço de massa de Radônio/Salinidade, apoia a natureza confinante das placas planas do recife e indicam implicações importantes para os impactos da DSAS em recifes tropicais. Exceto onde é incidido por correntes ou nascentes locais, as placas planas de recifes podem levar à DSAS para lagunas ou para a crista do recife centenas de metros em alto mar. Pelas águas subterrâneas poderem transportar poluentes, nutrientes, e águas com baixo pH, a placa plana do recife pode desempenhar um papel importante nos padrões espaciais da ecologia dos recifes e acidificação costeira.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2.
Fig. 3.
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Amato DW, Bishop JM, Glenn CR, Dulai H, Smith CM (2016) Impact of submarine groundwater discharge on marine water quality and reef biota of Maui. PLOS ONE 11:e0165825. https://doi.org/10.1371/journal.pone.0165825

    Article  Google Scholar 

  • Anthony SS (2004) Hydrogeology of selected islands of the Federated States of Micronesia, chap 24. In: Geology and hydrogeology of carbonate islands. Developments in Sedimentology 54, Elsevier, Amsterdam, pp 693–706

  • Ayers JF, Vacher HL (1986) Hydrogeology of an atoll island: a conceptual model from detailed study of a Micronesian example. Groundwater 24:185–198. https://doi.org/10.1111/j.1745-6584.1986.tb00994.x

    Article  Google Scholar 

  • Bailey R, Jenson J, Rubinstein D, Olsen A (2008) Groundwater resources of atoll islands: observations, modelling and management: technical report 119. Water and Environmental Research Institute of the Western Pacific, University of Guam, Mangilao, Guam

  • Bailey RT, Jenson JW, Olsen AE (2009) Numerical modeling of atoll island hydrogeology. Ground Water 47:184–196

    Article  Google Scholar 

  • Bailey RT, Jenson JW, Olsen AE (2010) Estimating the ground water resources of atoll islands. Water 2(1):1–27

  • Barillon R, Özgümüs A, Chambaudet A (2005) Direct recoil radon emanation from crystalline phases: influence of moisture content. Geochim Cosmochim Acta 69:2735–2744. https://doi.org/10.1016/j.gca.2004.11.021

    Article  Google Scholar 

  • Befus KM, Cardenas MB, Tait DR, Erler DV (2014) Geoelectrical signals of geologic and hydrologic processes in a fringing reef lagoon setting. J Hydrol 517:508–520. https://doi.org/10.1016/j.jhydrol.2014.05.070

    Article  Google Scholar 

  • Bishop JM, Glenn CR, Amato DW, Dulai H (2017) Effect of land use and groundwater flow path on submarine groundwater discharge nutrient flux. J Hydrol Reg Stud 11:194–218. https://doi.org/10.1016/j.ejrh.2015.10.008

    Article  Google Scholar 

  • Bojanowski R (1988) Inventory of radium isotopes in the oceans. No. IAEA-TECDOC-481, IAEA, Geneva

  • Burnett WC, Dulaiova H (2003) Estimating the dynamics of groundwater input into the coastal zone via continuous radon-222 measurements. J Environ Radioact 2001:21–35. https://doi.org/10.1016/S0265-931X(03)00084-5

  • Burnett WC, Aggarwal PK, Aureli A, Bokuniewicz H, Cable JE, Charette MA, Kontar E, Krupa S, Kulkarni KM, Loveless A, Moore WS, Oberdorfer JA, Oliveira J, Ozyurt N, Povinec P, Privitera AMG, Rajar R, Ramessur RT, Scholten J, Stieglitz T, Taniguchi M, Turner JV (2006) Quantifying submarine groundwater discharge in the coastal zone via multiple methods. Sci Total Environ 367:498–543. https://doi.org/10.1016/j.scitotenv.2006.05.009

    Article  Google Scholar 

  • Cardenas MB, Zamora PB, Siringan FP, Lapus MR, Rodolfo RS et al (2010) Linking regional sources and pathways for submarine groundwater discharge at a reef by electrical resistivity tomography, 222Rn, and salinity measurements. Geophys Res Lett 37. https://doi.org/10.1029/2010GL044066

  • Cecil LD, Green JR (2000) Radon-222. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Springer, Boston, pp 175–194. https://doi.org/10.1007/978-1-4615-4557-6_6

    Chapter  Google Scholar 

  • Comeau S, Edmunds PJ, Lantz CA, Carpenter RC (2014) Water flow modulates the response of coral reef communities to ocean acidification. Sci Rep 4:1–6. https://doi.org/10.1038/srep06681

    Article  Google Scholar 

  • Cook PG, Favreau G, Dighton JC, Tickell S (2003) Determining natural groundwater influx to a tropical river using radon, chlorofluorocarbons and ionic environmental tracers. J Hydrol 277:74–88

    Article  Google Scholar 

  • Crook ED, Potts D, Rebolledo-Vieyra M, Hernandez L, Paytan A (2012) Calcifying coral abundance near low-pH springs: implications for future ocean acidification. Coral Reefs 31:239–245. https://doi.org/10.1007/s00338-011-0839-y

    Article  Google Scholar 

  • Cuet P, Atkinson MJ, Blanchot J, Casareto BE, Cordier E, Falter J, Frouin P, Fujimura H, Pierret C, Susuki Y, Tourrand C (2011) CNP budgets of a coral-dominated fringing reef at La Réunion, France: coupling of oceanic phosphate and groundwater nitrate. Coral Reefs 30:45. https://doi.org/10.1007/s00338-011-0744-4

    Article  Google Scholar 

  • Cyronak T, Santos IR, Erler DV, Eyre BD (2013) Groundwater and porewater as major sources of alkalinity to a fringing coral reef lagoon (Muri Lagoon, Cook Islands). Biogeosciences 10:2467–2480. https://doi.org/10.5194/bg-10-2467-2013

    Article  Google Scholar 

  • Cyronak T, Santos IR, Erler DV, Maher DT, Eyre BD (2014) Drivers of pCO2 variability in two contrasting coral reef lagoons: the influence of submarine groundwater discharge. Glob Biogeochem Cycles 28:398–414. https://doi.org/10.1002/2013GB004598

    Article  Google Scholar 

  • Dickinson WR (2004) Impacts of eustasy and hydro-eustasy on the evolution and landforms of Pacific atolls. Palaeogeogr Palaeoclimatol Palaeoecol 213:251–269

    Article  Google Scholar 

  • Dimova NT, Swarzenski PW, Dulaiova H, Glenn CR (2012) Utilizing multichannel electrical resistivity methods to examine the dynamics of the fresh water–seawater interface in two Hawaiian groundwater systems. J Geophys Res Oceans 117. https://doi.org/10.1029/2011JC007509

  • Dubé CE, Mercière A, Vermeij MJA, Planes S (2017) Population structure of the hydrocoral Millepora platyphylla in habitats experiencing different flow regimes in Moorea, French Polynesia. PLOS ONE 12:e0173513. https://doi.org/10.1371/journal.pone.0173513

    Article  Google Scholar 

  • Edmunds P, Adam T, Baker A, Doo S, Glynn P, Manzello D, Silbiger N, Smith T, Fong P (2018) Why more comparative approaches are required in time-series analyses of coral reef ecosystems. Mar Ecol Prog Ser 608:297–306. https://doi.org/10.3354/meps12805

    Article  Google Scholar 

  • Engott JA, Johnson AG, Bassiouni M, Izuka SK, Rotzoll K (2017) Spatially distributed groundwater recharge for 2010 land cover estimated using a water-budget model for the Island of O’ahu, Hawai’i. US Geol Surv Sci Invest Rep 2015-5010

  • Eyre BD, Andersson AJ, Cyronak T (2014) Benthic coral reef calcium carbonate dissolution in an acidifying ocean. Nat Clim Change 4:969–976. https://doi.org/10.1038/nclimate2380

    Article  Google Scholar 

  • Eyre BD, Cyronak T, Drupp P, Carlo EHD, Sachs JP, Andersson AJ (2018) Coral reefs will transition to net dissolving before end of century. Science 359:908–911. https://doi.org/10.1126/science.aao1118

    Article  Google Scholar 

  • Falkland AC (1994) Climate, Hydrology and water resources of the Cocos (Keeling) Islands. Atoll Res Bull 400:1–23

    Article  Google Scholar 

  • Fick SE, Hijmans RJ (2017) WorldClim 2: new 1-km spatial resolution climate surfaces for global land areas. Int J Climatol 37:4302–4315. https://doi.org/10.1002/joc.5086

    Article  Google Scholar 

  • Garrison GH, Glenn CR, McMurtry GM (2003) Measurement of submarine groundwater discharge in Kahana Bay, O’ahu, Hawai’i. Limnol Oceanogr 48:920–928. https://doi.org/10.4319/lo.2003.48.2.0920

    Article  Google Scholar 

  • Giambelluca TW, DeLay JK, Nullet MA, Scholl MA, Gingerich SB (2011) Canopy water balance of windward and leeward Hawaiian cloud forests on Haleakalā, Maui, Hawai’i. Hydrol Process 25:438–447

    Article  Google Scholar 

  • Gingerich SB, Voss CI (2005) Three-dimensional variable-density flow simulation of a coastal aquifer in southern Oahu, USA. Hydrogeol J 13:436–450

    Article  Google Scholar 

  • Gove JM, McManus MA, Neuheimer AB, Polovina JJ, Drazen JC, Smith CR, Merrifield MA, Friedlander AM, Ehses JS, Young CW, Dillon AK, Williams GJ (2016) Near-island biological hotspots in barren ocean basins. Nat Commun 7:10581. https://doi.org/10.1038/ncomms10581

    Article  Google Scholar 

  • Grossman EE, Barnhardt WA, Hart P, Richmond BM, Field ME (2006) Shelf stratigraphy and the influence of antecedent substrate on Holocene reef development, south Oahu, Hawaii. Mar Geol 226:97–114. https://doi.org/10.1016/j.margeo.2005.09.012

    Article  Google Scholar 

  • Hagedorn B, El-Kadi A, Mair A, Whittier R, Ha K (2011) Estimating recharge in fractured aquifers of a temperate humid to semiarid volcanic island (Jeju, Korea) from water table fluctuations, and Cl, CFC-12 and 3H chemistry. J Hydrol 409:650–662. https://doi.org/10.1016/j.jhydrol.2011.08.060

    Article  Google Scholar 

  • Hagedorn B, El-Kadi A, Whittier R (2016) Controls on the δ13CDIC and alkalinity budget of a flashy subtropical stream (Manoa River, Hawaii). Appl Geochem 73. https://doi.org/10.1016/j.apgeochem.2016.07.008

  • Harlow J, Hagedorn B (2019) SWB modeling of groundwater recharge on Catalina Island, California, during a period of severe drought. Water 11:58. https://doi.org/10.3390/w11010058

    Article  Google Scholar 

  • Haßler K, Dähnke K, Kölling M, Sichoix L, Nickl A-L, Moosdorf N (2019) Provenance of nutrients in submarine fresh groundwater discharge on Tahiti and Moorea, French Polynesia. Appl Geochem 100:181–189. https://doi.org/10.1016/j.apgeochem.2018.11.020

    Article  Google Scholar 

  • Hemmings B, Whitaker F, Gottsmann J, Hughes A (2015) Hydrogeology of Montserrat review and new insights. J Hydrol Reg Stud 3:1–30. https://doi.org/10.1016/j.ejrh.2014.08.008

    Article  Google Scholar 

  • Hench JL, Leichter JJ, Monismith SG (2008) Episodic circulation and exchange in a wave-driven coral reef and lagoon system. Limnol Oceanogr 53:2681–2694. https://doi.org/10.4319/lo.2008.53.6.2681

    Article  Google Scholar 

  • Hijmans RJ, Cameron SE, Parra JL, Jones PG, Jarvis A (2005) Very high resolution interpolated climate surfaces for global land areas. Int J Climatol 25:1965–1978. https://doi.org/10.1002/joc.1276

    Article  Google Scholar 

  • Hildenbrand A, Marlin C, Conroy A, Gillot P-Y, Filly A, Massault M (2005) Isotopic approach of rainfall and groundwater circulation in the volcanic structure of Tahiti-Nui (French Polynesia). J Hydrol 302:187–208. https://doi.org/10.1016/j.jhydrol.2004.07.006

    Article  Google Scholar 

  • Houben GJ, Stoeckl L, Mariner KE, Choudhury AS (2018) The influence of heterogeneity on coastal groundwater flow: physical and numerical modeling of fringing reefs, dykes and structured conductivity fields. Adv Water Resour 113:155–166. https://doi.org/10.1016/j.advwatres.2017.11.024

    Article  Google Scholar 

  • Izuka SK, Oki DS, Chen C (2005) Effects of irrigation and rainfall reduction on ground-water recharge in the Lihue Basin, Kauai, Hawaii. US Geol Surv Sci Invest Rep 2005-5146, 48 pp

  • Jackson PD, Jarrard RD, Pigram CJ, Pearce JM (1993) Resistivity/porosity/velocity relationships from downhole logs: an aid for evaluating pore morphology, chap 45. In: Proceedings of the Ocean Drilling Program, Scientific Results 142, Texas A&M, College Station, TX

  • Jackson PD, Briggs KB, Flint RC, Holyer RJ, Sandidge JC (2002) Two- and three-dimensional heterogeneity in carbonate sediments using resistivity imaging. Mar Geol 182:55–76. https://doi.org/10.1016/S0025-3227(01)00228-6

    Article  Google Scholar 

  • Johnson AG, Engott JA, Bassiouni M, Rotzoll K (2018) Spatially distributed groundwater recharge estimated using a water-budget model for the Island of Maui, Hawai`i, 1978–2007. US Geol Surv Sci Invest Rep 2014-5168

  • Juvik JO, Nullet D (1995) Relationships between rainfall, cloud-water interception and canopy throughfall in a Hawaiian montane forest. In: Hamilton LS, Juvik JO, Scatena FN (eds) Tropical montane cloud forests. Springer, New York, pp 165–182

    Chapter  Google Scholar 

  • Juvik JO, DeLay JK, Kinney KM, Hansen EW (2011) A 50th anniversary reassessment of the seminal ‘Lāna’i fog drip study’ in Hawai’i. Hydrol Process 25:402–410

    Article  Google Scholar 

  • Kelly JL, Dulai H, Glenn CR, Lucey PG (2019) Integration of aerial infrared thermography and in situ radon-222 to investigate submarine groundwater discharge to Pearl Harbor, Hawaii, USA. Limnol Oceanogr 64:238–257. https://doi.org/10.1002/lno.11033

    Article  Google Scholar 

  • Knee KL, Street JH, Grossman EE, Boehm AB, Paytan A (2010) Nutrient inputs to the coastal ocean from submarine groundwater discharge in a groundwater-dominated system: relation to land use (Kona coast, Hawaii, U.S.A.). Limnol Oceanogr 55:1105–1122. https://doi.org/10.4319/lo.2010.55.3.1105

    Article  Google Scholar 

  • Knee KL, Crook ED, Hench JL, Leichter JJ, Paytan A (2016) Assessment of submarine groundwater discharge (SGD) as a source of dissolved radium and nutrients to Moorea (French Polynesia) coastal waters. Estuaries Coasts 39:1651–1668. https://doi.org/10.1007/s12237-016-0108-y

    Article  Google Scholar 

  • Koh G-W, Kang B-R, Moon D-C (2006) Hydro-geological features and groundwater management systems of Jeju Island. Proc Jeju Hawaii Water Forum, Jeju, Korea, July 2006, pp 325–362

  • Lau LS, Mink JF (2006) Hydrology of the Hawaiian Islands. University of Hawai’i Press, Honolulu

    Book  Google Scholar 

  • Leichter JJ, Aildredge AL, Bernardi G, Brooks A, Carlson C, Carpenter RC, Edmunds P, Fewing MR, Hanson K, Hench JL, Holbrook SJ, Nelson C, Toonen R, Washburn L, Wyatt A (2013) Biological and physical interactions on a tropical island coral reef: transport and retention processes around Moorea, French Polynesia. Oceanography 26:52–63

    Article  Google Scholar 

  • Lubarsky KA, Silbiger NJ, Donahue MJ (2018) Effects of submarine groundwater discharge on coral accretion and bioerosion on two shallow reef flats. Limnol Oceanogr 63:1660–1676. https://doi.org/10.1002/lno.10799

    Article  Google Scholar 

  • Macintyre IG (1977) Distribution of submarine cements in a modern Caribbean fringing reef, Galeta Point, Panama. J Sediment Res 47:503–516. https://doi.org/10.1306/212F71C1-2B24-11D7-8648000102C1865D

    Article  Google Scholar 

  • Macintyre IG (2011) Submarine lithification. In: Hopley D (ed) Encyclopedia of modern coral reefs: structure, form and process. Springer, Dordrecht, The Netherlands, pp 1052–1058. https://doi.org/10.1007/978-90-481-2639-2_28

    Chapter  Google Scholar 

  • Mair A, Johnson AG, Rotzoll K, Oki DS (2019) Estimated groundwater recharge from a water-budget model incorporating selected climate projections, Island of Maui, Hawai’i. US Geol Surv Sci Invest Rep 2019-5064

  • McMahon A, Santos IR (2017) Nitrogen enrichment and speciation in a coral reef lagoon driven by groundwater inputs of bird guano. J Geophys Res Oceans 122:7218–7236

    Article  Google Scholar 

  • Montiel D, Dimova N, Andreo B, Prieto J, García-Orellana J, Rodellas V (2018) Assessing submarine groundwater discharge (SGD) and nitrate fluxes in highly heterogeneous coastal karst aquifers: challenges and solutions. J Hydrol 557:222–242. https://doi.org/10.1016/j.jhydrol.2017.12.036

    Article  Google Scholar 

  • Mu Q, Heinsch FA, Zhao M, Running SW (2007) Development of a global evapotranspiration algorithm based on MODIS and global meteorology data. Remote Sens Environ 111:519–536. https://doi.org/10.1016/j.rse.2007.04.015

    Article  Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800. https://doi.org/10.1016/j.rse.2011.02.019

    Article  Google Scholar 

  • Nelson CE, Donahue MJ, Dulaiova H, Goldberg SJ, La Valle FF, Lubarsky K, Miyano J, Richardson C, Silbiger NJ, Thomas FIM (2015) Fluorescent dissolved organic matter as a multivariate biogeochemical tracer of submarine groundwater discharge in coral reef ecosystems. Mar Chem 177:232–243. https://doi.org/10.1016/j.marchem.2015.06.026

    Article  Google Scholar 

  • Null KA, Knee KL, Crook ED, de Sieyes NR, Rebolledo-Vieyra M, Hernández-Terrones L, Paytan A (2014) Composition and fluxes of submarine groundwater along the Caribbean coast of the Yucatan Peninsula. Cont Shelf Res 77:38–50. https://doi.org/10.1016/j.csr.2014.01.011

    Article  Google Scholar 

  • Oberdorfer JA, Buddemeier RW (1986) Coral-reef hydrology: field studies of water movement within a barrier reef. Coral Reefs 5:7–12. https://doi.org/10.1007/BF00302165

    Article  Google Scholar 

  • Oehler T, Bakti H, Lubis RF, Purwoarminta A, Delinom R, Moosdorf N (2019a) Nutrient dynamics in submarine groundwater discharge through a coral reef (western Lombok, Indonesia). Limnol Oceanogr 64:2646–2661. https://doi.org/10.1002/lno.11240

    Article  Google Scholar 

  • Oehler T, Tamborski J, Rahman S, Moosdorf N, Ahrens J, Mori C, Neuholz R, Schnetger B, Beck M (2019b) DSi as a tracer for submarine groundwater discharge. Front Mar Sci 6. https://doi.org/10.3389/fmars.2019.00563

  • Oki DS, Souza WR, Bolke EL, Bauer GR (1998) Numerical analysis of the hydrogeologic controls in a layered coastal aquifer system, Oahu, Hawaii, USA. Hydrogeol J 6:243–263. https://doi.org/10.1007/s100400050149

    Article  Google Scholar 

  • Paerl HW (1997) Coastal eutrophication and harmful algal blooms: importance of atmospheric deposition and groundwater as “new” nitrogen and other nutrient sources. Limnol Oceanogr 42:1154–1165. https://doi.org/10.4319/lo.1997.42.5_part_2.1154

    Article  Google Scholar 

  • Parnell K (1986) Water movement within a fringing reef flat, Orpheus Island, North Queensland, Australia. J Int Soc Reef Stud 5:1–6. https://doi.org/10.1007/BF00302164

    Article  Google Scholar 

  • Parra SM, Valle-Levinson A, Mariño-Tapia I, Enriquez C (2015) Salt intrusion at a submarine spring in a fringing reef lagoon. J Geophys Res Oceans 120:2736–2750. https://doi.org/10.1002/2014JC010459

    Article  Google Scholar 

  • Paytan A, Shellenbarger GG, Street JH, Gonneea ME, Davis K, Young MB, Moore WS (2006) Submarine groundwater discharge: an important source of new inorganic nitrogen to coral reef ecosystems. Limnol Oceanogr 51:343–348. https://doi.org/10.4319/lo.2006.51.1.0343

    Article  Google Scholar 

  • Petermann E, Schubert M (2015) Quantification of the response delay of mobile radon-in-air detectors applied for detecting short-term fluctuations of radon-in-water concentrations. Eur Phys J Spec Top 224:697–707. https://doi.org/10.1140/epjst/e2015-02400-5

    Article  Google Scholar 

  • Peterson RN, Burnett WC, Glenn CR, Johnson AG (2009) Quantification of point-source groundwater discharges to the ocean from the shoreline of the Big Island, Hawaii. Limnol Oceanogr 54:890–904. https://doi.org/10.4319/lo.2009.54.3.0890

    Article  Google Scholar 

  • Povinec PP, Burnett WC, Beck A, Bokuniewicz H, Charette M, Gonneea ME, Groening M, Ishitobi T, Kontar E, Liong Wee Kwong L, Marie DEP, Moore WS, Oberdorfer JA, Peterson R, Ramessur R, Rapaglia J, Stieglitz T, Top Z (2012) Isotopic, geophysical and biogeochemical investigation of submarine groundwater discharge: IAEA-UNESCO intercomparison exercise at Mauritius Island. J Environ Radioact 104:24–45. https://doi.org/10.1016/j.jenvrad.2011.09.009

    Article  Google Scholar 

  • Prouty NG, Cohen A, Yates KK, Storlazzi CD, Swarzenski PW, White D (2017) Vulnerability of coral reefs to bioerosion from land-based sources of pollution. J Geophys Res Oceans 122:9319–9331. https://doi.org/10.1002/2017JC013264

    Article  Google Scholar 

  • Rad SD, Allègre CJ, Louvat P (2007) Hidden erosion on volcanic islands. Earth Planet Sci Lett 262:109–124. https://doi.org/10.1016/j.epsl.2007.07.019

    Article  Google Scholar 

  • Richardson CM, Dulai H, Popp BN, Ruttenberg K, Fackrell JK (2017) Submarine groundwater discharge drives biogeochemistry in two Hawaiian reefs. Limnol Oceanogr 62:S348–S363. https://doi.org/10.1002/lno.10654

    Article  Google Scholar 

  • Rosman JH, Hench JL (2011) A framework for understanding drag parameterizations for coral reefs. J Geophys Res Oceans 116. https://doi.org/10.1029/2010JC006892

  • Rotzoll K, Oki D, El-Kadi AI (2010) Changes of freshwater-lens thickness in basaltic island aquifers overlain by thick coastal sediments. Hydrogeol J 18:1425–1436

    Article  Google Scholar 

  • Rougerie F, Fichez R, Dejardin, P (2004) Geomorphology and hydrogeology of selected islands of French Polynesia: Tikehau (Atoll) and Tahiti (Barrier Reef). In: Geology and hydrogeology of carbonate islands. Develop Sedimentol 54:475–502.

  • Rushton KR, Ward C (1979) The estimation of groundwater recharge. J Hydrol 41:345–361

    Article  Google Scholar 

  • Santos IR, Erler D, Tait D, Eyre BD (2010) Breathing of a coral cay: Tracing tidally driven seawater recirculation in permeable coral reef sediments. J Geophys Res Oceans 115:10

    Article  Google Scholar 

  • Sawyer AH, David CH, Famiglietti JS (2016) Continental patterns of submarine groundwater discharge reveal coastal vulnerabilities. Science 353:705–707. https://doi.org/10.1126/science.aag1058

    Article  Google Scholar 

  • Schubert M, Petermann E, Stollberg R, Gebel M, Scholten J, Knöller K, Lorz C, Glück F, Riemann K, Weiß H (2019) Improved approach for the investigation of submarine groundwater discharge by means of radon mapping and radon mass balancing. Water 11:749. https://doi.org/10.3390/w11040749

    Article  Google Scholar 

  • Schubert M, Scholten J, Schmidt A, Comanducci JF, Pham MK, Mallast U, Knoeller K (2014) Submarine groundwater discharge at a single spot location: evaluation of different detection approaches. Water 6:584–601

    Article  Google Scholar 

  • Silbiger NJ, Nelson CE, Remple K, Sevilla JK, Quinlan ZA, Putnam HM, Fox MD, Donahue MJ (2018) Nutrient pollution disrupts key ecosystem functions on coral reefs. https://doi.org/10.5061/dryad.nm1ns61

  • Street JH, Knee KL, Grossman EE, Paytan A (2008) Submarine groundwater discharge and nutrient addition to the coastal zone and coral reefs of leeward Hawaii. Mar Chem 109:355–376

    Article  Google Scholar 

  • Tait DR, Santos IR, Erler DV, Befus KM, Cardenas MB, Eyre BD (2013) Estimating submarine groundwater discharge in a South Pacific coral reef lagoon using different radioisotope and geophysical approaches. Mar Chem 156:49–60. https://doi.org/10.1016/j.marchem.2013.03.004

    Article  Google Scholar 

  • Tait DR, Erler DV, Santos IR, Cyronak TJ, Morgenstern U, Eyre BD (2014) The influence of groundwater inputs and age on nutrient dynamics in a coral reef lagoon. Mar Chem 166:36–47. https://doi.org/10.1016/j.marchem.2014.08.004

    Article  Google Scholar 

  • Tomlinson MS, De Carlo EH (2003) The need for high resolution time series data to characterize Hawaiian streams. J Am Water Resour Assoc 39:113–123

    Article  Google Scholar 

  • Tribble GW, Sansone FJ, Buddemeier RW, Li Y-H (1992) Hydraulic exchange between a coral reef and surface sea water. GSA Bull 104:1280–1291. https://doi.org/10.1130/0016-7606(1992)104<1280:HEBACR>2.3.CO;2

    Article  Google Scholar 

  • Vacher HL (2007) Introduction: Varieties of carbonate islands and a historical perspective. In: Vacher HL, Quinn T (eds) Geology and hydrogeology of carbonate islands. Developments in Sedimentology, vol 54, Elsevier, Amsterdam, pp 1–33

    Google Scholar 

  • Wang G, Jing W, Wang S, Xu Y, Wang Z, Zhang Z, Li Q, Dai M (2014) Coastal acidification induced by tidal-driven submarine groundwater discharge in a coastal coral reef system. Environ Sci Technol 48:13069–13075. https://doi.org/10.1021/es5026867

    Article  Google Scholar 

  • Wanninkhof R (2014) Relationship between wind speed and gas exchange over the ocean revisited. Limnol Oceanogr Methods 12:351–362. https://doi.org/10.4319/lom.2014.12.351

    Article  Google Scholar 

  • Weigel F (1978) Radon. Chem Ztg 102:287–299

    Google Scholar 

  • Werner AD, Sharp HK, Galvis SC, Post VEA, Sinclair P (2017) Hydrogeology and management of freshwater lenses on atoll islands: Review of current knowledge and research needs. J Hydrol https://doi.org/10.1016/j.jhydrol.2017.02.047

  • Woodroffe CD (2008) Reef-island topography and the vulnerability of atolls to sea-level rise. Glob Planet Change 62:77–96. https://doi.org/10.1016/j.gloplacha.2007.11.001

    Article  Google Scholar 

Download references

Acknowledgements

We are indebted to Megan Donahue, Henry Shui, and Danielle Barnas for their help and support with fieldwork and to Doug Hammond for the analysis of 226Ra activities at USC. We also thank Neil Davies, Teurumereariki Hinano Murphy, Valentine Brotherson and Jacques You Sing from Gump Station for logistic support. We are furthermore grateful for the constructive comments of two anonymous reviewers. This study was funded by U.S. National Science Foundation HS-1936671 to BH and MB and OCE-1924281 to NJS (CSUN Marine Biology contribution No. 305). Some resources were provided by the Mo’orea Coral Reef LTER, which is supported by the U.S. National Science Foundation under Grant (OCE#16-37396) as well as a generous gift from the Gordon and Betty Moore Foundation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin Hagedorn.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hagedorn, B., Becker, M.W. & Silbiger, N.J. Evidence of freshened groundwater below a tropical fringing reef. Hydrogeol J 28, 2501–2517 (2020). https://doi.org/10.1007/s10040-020-02191-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02191-1

Keywords

Navigation