Skip to main content
Log in

Effects of benzo[a]pyrene toxicity on morphology and ultrastructure of Hordeum sativum

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

Many studies have been devoted to investigation of toxic benzo(a)pyrene (BaP) compound, but studies involving changes at the cellular level are insufficient to understand the mechanisms of polycyclic aromatic hydrocarbons (PAHs) effect on plants. To study the toxicity of BaP, a model vegetation experiment was conducted on cultivation of spring barley (Hordeum sativum distichum) on artificially polluted BaP soil at different concentrations. The article discusses the intake of BaP from the soil into the plant and its effect on the organismic and cellular levels of plant organization. The BaP content in the organs of spring barley was determined by the method of saponification. With an increase in the concentration of BaP in the soil, its content in plants also rises, which leads to inhibition of growth processes. The BaP content in the green part of Hordeum sativum increased from 0.3 µg kg−1 in control soil up to 2.6 µg kg−1 and 16.8 µg kg−1 under 20 and 400 ng/g BaP applying in soil, as well as in roots: 0.9 µg kg−1, 7.7 µg kg−1, 42.8 µg kg−1, respectively. Using light and electron microscopy, changes in the tissues and cells of plants were found and it was established that accumulation of BaP in plant tissues caused varying degrees of ultrastructural damage depending on the concentration of pollutant. BaP had the greatest effect on the root, significant changes were found in it both at histological and cytological levels, while changes in the leaves were observed only at the cytological level. The results provide significant information about the mechanism of action of BaP on agricultural plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abdel-Shafy, H. I., & Mansour, M. S. (2016). A review on polycyclic aromatic hydrocarbons: Source, environmental impact, effect on human health and remediation. Egyptian Journal of Petroleum, 25(1), 107–123. https://doi.org/10.1016/j.ejpe.2015.03.011.

    Article  Google Scholar 

  • Alkio, M., Tabuchi, T. M., Wang, X., & Colon-Carmona, A. (2005). Stress responses to polycyclic aromatic hydrocarbons in Arabidopsis include growth inhibition and hypersensitive response-like symptoms. Journal of Experimental Botany, 56(421), 2983–2994. https://doi.org/10.1093/jxb/eri295.

    Article  CAS  Google Scholar 

  • Aniskina, M. V. (2006). Mutagenic and toxic effects in Tradescantia (clon 02) and Arabidopsisthaliana (L.) Heynh. induced by oil and oil products: Abstract. thesis…. cand. biol. sciences. Syktyvkar, 2006. P. 20 (in Russian).

  • Arendt, E. K., & Zannini, E. (2013). Cereal grains for the food and beverage industries. Barley, 100, 1. https://doi.org/10.1533/9780857098924.155.

    Article  Google Scholar 

  • Beriro, D. J., Cave, M. R., Wragg, J., Thomas, R., Wills, G., & Evans, F. (2016). A review of the current state of the art of physiologically-based tests for measuring human dermal in vitro bioavailability of polycyclic aromatic hydrocarbons (PAH) in soil. Journal of Hazardous Materials, 305, 240–259. https://doi.org/10.1016/j.jhazmat.2015.11.010.

    Article  CAS  Google Scholar 

  • Beznosikov, V.A., Kondratenok, B.M., Gabov, D.N., Yakovleva, E.V., & Vasilevich, M.I. (2008). Polycyclic aromatic hydrocarbons in the soil-plant system. Bulletin of the Institute of Biology, Komi Science Center, Ural Branch of the Russian Academy of Sciences (IB Komi SC UB RAS). Syktyvkar: IB Komi SC, UB of RAS, pp. 2–8 (in Russian).

  • Durmishidze, S. V., Buadze, O. A., Devdariani, T. V. et al. (1979). Effect of benzo(a)pyrene on the ultrastructure of dividing corn root cells. Plants and Chemical Carcinogens. L.: Science. Pp. 12–13 (in Russian).

  • Fedorenko, G. M., Fedorenko, A. G., Minkina, T. M., Mandzhieva, S. S., Rajput, V. D., Usatov, A. V., et al. (2018). Method for hydrophytic plant sample preparation for light and electron microscopy (studies on Phragmites australis Cav.). MethodsX, 5, 1213–1220. https://doi.org/10.1016/j.mex.2018.09.009.

    Article  Google Scholar 

  • Feng, J., Li, X., Zhao, J., & Sun, J. (2017). Distribution, transfer, and health risks of polycyclic aromatic hydrocarbons (PAHs) in soil-wheat systems of Henan Province, a typical agriculture province of China. Environmental Science and Pollution Research, 24(22), 18195–18203. https://doi.org/10.1007/s11356-017-9473-8.

    Article  CAS  Google Scholar 

  • Gennadiev, A. N., Pikovsky, Yu I, Tsibart, A. S., & Smirnova, M. A. (2015). Hydrocarbons in soils: Origin, composition, behavior (review)]. Soil Science, 10, 1195. (in Russian).

    Google Scholar 

  • Gimp, A. V., Tyurina, I. G., Sushkova, S. N., & Minkina, T. M. (2015). Features of degradation of benzo(a)pyrene in chernozem soils and its effect on the morphobiometric characteristics of barley In Reflection of bio-, geo-, anthropospheric interactions in soils and soil cover (pp. 175–177) (in Russian).

  • GN 2.1.5.689-98 Maximum allowable concentrations (MPC) of chemicals in the water of drinking, cultural and social waters.

  • Grijalbo, L., Garbisu, C., Martín, I., Etxebarria, J., Gutierrez-Mañero, F. J., Garcia, L., et al. (2015). Functional diversity and dynamics of bacterial communities in a membrane bioreactor for the treatment of metal-working fluid wastewater. Journal of Water and Health, 13(4), 1006–1019. https://doi.org/10.2166/wh.2015.079.

    Article  Google Scholar 

  • Hygienic regulations 2.1.7.2041-06. (2018). Maximum allowable concentration (MPC) of chemicals in the soil. International Agency for Research on Cancer et al. Agents classified by the IARC monographs, volumes 1–122.

  • ISO 13877-2005. (2005). Soil quality-determination of polynuclear aromatic hydrocarbons—Method using high -performance liquid chromatography.

  • IUSS Working Group WRB. (2015). World reference base for soil resources 2014, update 2015. International soil classification system for naming soils and creating legends for soil maps. World soil resources reports. FAO. Rome. Issue 106.

  • Jajoo, A., Mekala, N. R., Tomar, R. S., Grieco, M., Tikkanen, M., & Aro, E. M. (2014). Inhibitory effects of polycyclic aromatic hydrocarbons (PAHs) on photosynthetic performance are not related to their aromaticity. Journal of Photochemistry and Photobiology B: Biology, 137, 151–155. https://doi.org/10.1016/j.jphotobiol.2014.03.011.

    Article  CAS  Google Scholar 

  • Kang, F., Chen, D., Gao, Y., & Zhang, Y. (2010). Distribution of polycyclic aromatic hydrocarbons in subcellular root tissues of ryegrass (Lolium multiflorum Lam.). BMC plantbiology, 10(1), 210. https://doi.org/10.1186/1471-2229-10-210.

    Article  CAS  Google Scholar 

  • Khalil, A., & Al-Daoude, A. (2018). Determination of gamma irradiation effects on polycyclic aromatic hydrocarbons content in wheat brans and endosperms using HPLC\FLT analysis. Journal of Consumer Protection and Food Safety, 13(4), 407–412. https://doi.org/10.1007/s00003-018-1185-6.

    Article  CAS  Google Scholar 

  • Kummerová, M., Barták, M., Dubová, J., Tříska, J., Zubrová, E., & Zezulka, Š. (2006). Inhibitory effect of fluoranthene on photosynthetic processes in lichens detected by chlorophyll fluorescence. Ecotoxicology, 15(2), 121–131. https://doi.org/10.1007/s10646-005-0037-1.

    Article  CAS  Google Scholar 

  • Kvesitadze, G. I., Khatisashvili, G. A., Sadunishvili, T. A., & Evstigneeva, Z. G. (2005). Metabolism of anthropogenic toxicants in higher plants/Ed. by IN. Popova. - M.: Science, 2005, pp. 199 (in Russian).

  • Lai, Y. C., Tsai, C. H., Chen, Y. L., & Chang-Chien, G. P. (2017). Distribution and sources of atmospheric polycyclic aromatic hydrocarbons at an industrial region in Kaohsiung. Taiwan. Aerosol and Air Quality Research, 17, 776–787. https://doi.org/10.1007/s10661-018-6521-x.

    Article  CAS  Google Scholar 

  • Lankin, A. V. (2016). The mechanisms of the toxic effect of polycyclic aromatic hydrocarbons on the photosynthetic apparatus (Doctoral dissertation, —M., P. 102) (in Russian).

  • Li, H., & Ma, Y. (2016). Field study on the uptake, accumulation, translocation and risk assessment of PAHs in a soil-wheat system with amendments of sewage sludge. Science of the Total Environment, 560, 55–61. https://doi.org/10.1016/j.scitotenv.2016.04.017.

    Article  CAS  Google Scholar 

  • Liu, Y., Leigh, J. W., Brinkmann, H., Cushion, M. T., Rodriguez-Ezpeleta, N., Philippe, H., et al. (2009). Phylogenomic analyses support the monophyly of Taphrinomycotina, including Schizosaccharomyces fission yeasts. Molecular Biology and Evolution, 26(1), 27–34. https://doi.org/10.1093/molbev/msn221.

    Article  CAS  Google Scholar 

  • Marwood, C. A., Smith, R. E., Solomon, K. R., Charlton, M. N., & Greenberg, B. M. (1999). Intact and photomodified polycyclic aromatic hydrocarbons inhibit photosynthesis in natural assemblages of Lake Erie phytoplankton exposed to solar radiation. Ecotoxicology and Environmental Safety, 44(3), 322–327. https://doi.org/10.1006/eesa.1999.1840.

    Article  CAS  Google Scholar 

  • Meudec, A., Poupart, N., Dussauze, J., & Deslandes, E. (2007). Relationship between heavy fuel oil phytotoxicity and polycyclic aromatic hydrocarbon contamination in Salicornia fragilis. Science of the Total Environment, 381(1–3), 146–156. https://doi.org/10.1016/j.scitotenv.2007.04.005.

    Article  CAS  Google Scholar 

  • Naidoo, G. (2016). Mangrove propagule size and oil contamination effects: Does size matter? Marine Pollution Bulletin, 110(1), 362–370. https://doi.org/10.1016/j.marpolbul.2016.06.040.

    Article  CAS  Google Scholar 

  • Naidoo, G., & Naidoo, K. (2016). Uptake of polycyclic aromatic hydrocarbons and their cellular effects in the mangrove Bruguieragymnorrhiza. Marine Pollution Bulletin, 113(1–2), 193–199. https://doi.org/10.1016/j.marpolbul.2016.09.012.

    Article  CAS  Google Scholar 

  • Naidoo, G., & Naidoo, K. (2017). Ultrastructural effects of polycyclic aromatic hydrocarbons in the mangroves Avicennia marina and Rhizophoramucronata. Flora, 235, 1–9. https://doi.org/10.1016/j.flora.2017.08.006.

    Article  Google Scholar 

  • Naidoo, G., Naidoo, Y., & Achar, P. (2010). Responses of the mangroves Avicennia marina and Bruguiera gymnorrhiza to oil contamination. Flora - Morphology, Distribution, Functional Ecology of Plants, https://doi.org/10.1016/j.flora.2009.12.033.

    Article  Google Scholar 

  • Norkina, E Yu., & Slepyan, E. I. (1979). The effect of chemical carcinogens on the morphology of seedlings and differentiation of tracheids]. Piceaabies. Plants and chemical carcinogens. L: Science, 1979, 33–35. (in Russian).

    Google Scholar 

  • Office of the Federal Registration (OFR). (1982). Appendix A: Priority pollutants. FedReg., 47, 52309.

    Google Scholar 

  • Pedroso, A. N. V., Bussotti, F., Papini, A., Tani, C., & Domingos, M. (2016). Pollution emissions from a petrochemical complex and other environmental stressors induce structural and ultrastructural damage in leaves of a biosensor tree species from the Atlantic Rain Forest. Ecological Indicators, 67, 215–226. https://doi.org/10.1016/j.ecolind.2016.02.054.

    Article  CAS  Google Scholar 

  • Pretorius, T. R., Charest, C., Kimpe, L. E., & Blais, J. M. (2018). The accumulation of metals, PAHs and alkyl PAHs in the roots of Echinacea purpurea. PloSone. https://doi.org/10.1371/journal.pone.0208325.

    Article  Google Scholar 

  • Rani, M., & Shanker, U. (2019). Sunlight mediated improved photocatalytic degradation of carcinogenic benz [a] anthracene and benzo [a] pyrene by zinc oxide encapsulated hexacyanoferrate nanocomposite. Journal of Photochemistry and Photobiology A: Chemistry, 381, 111861. https://doi.org/10.1016/j.jphotochem.2019.111861.

    Article  CAS  Google Scholar 

  • Ren, X., Zeng, G., Tang, L., Wang, J., Wan, J., Liu, Y., et al. (2018). Sorption, transport and biodegradation–an insight into bioavailability of persistent organic pollutants in soil. Science of the Total Environment, 610, 1154–1163. https://doi.org/10.1016/j.scitotenv.2017.08.089.

    Article  CAS  Google Scholar 

  • Safe Reference Levels of Impact (SRLI) of pollutants in the athmosphere of populated areas. Hygienic standards GN 2.1.6.2309-07 Moscow – 2008.

  • SanPiN 1.2.2353-08 Carcinogenic factors and basic requirements for the prevention of carcinogenic hazard.

  • SanPiN 2.3.2. 2401-08 Hygienic requirements for food safety and nutritional value.

  • Sivaram, A. K., Logeshwaran, P., Lockington, R., Naidu, R., & Megharaj, M. (2018). Impact of plant photosystems in the remediation of benzo [a] pyrene and pyrene spiked soils. Chemosphere, 193, 625–634. https://doi.org/10.1016/j.chemosphere.2017.11.081.

    Article  CAS  Google Scholar 

  • Sun, K., Habteselassie, M. Y., Liu, J., Li, S., & Gao, Y. (2018a). Subcellular distribution and biotransformation of phenanthrene in pakchoi after inoculation with endophytic Pseudomonas sp. as probed using HRMS coupled with isotope-labeling. Environmental Pollution, 237, 858–867. https://doi.org/10.1016/j.envpol.2017.11.039.

    Article  CAS  Google Scholar 

  • Sun, J., Pan, L., Tsang, D. C., Zhan, Y., Zhu, L., & Li, X. (2018b). Organic contamination and remediation in the agricultural soils of China: A critical review. Science of the Total Environment, 615, 724–740. https://doi.org/10.1016/j.scitotenv.2017.09.271.

    Article  CAS  Google Scholar 

  • Sushkova, S. N., Minkina, T. M., Mandzhieva, S. S., Deryabkina, I. G., Vasil’eva, G. K., & Kızılkaya, R. (2017). Dynamics of benzo [α] pyrene accumulation in soils under the influence of aerotechnogenic emissions. Eurasian soil science, 50(1), 95–105. https://doi.org/10.1134/S1064229317010148.

    Article  CAS  Google Scholar 

  • Sushkova, S. N., Minkina, T. M., Mandzhieva, S., Vasilyeva, G., Borisenlo, N., Turina, I., et al. (2016). New alternative method of benzo[a]pyrene extraction from soils and its approbation in soil under technogenic pressure. Journal of Soils and Sediments, 16(4), 1323–1329. https://doi.org/10.1007/s11368-015-1104-8.

    Article  CAS  Google Scholar 

  • Tian, K., Bao, H., Liu, X., & Wu, F. (2018). Accumulation and distribution of PAHs in winter wheat from areas influenced by coal combustion in China. Environmental Science and Pollution Research, 25(24), 23780–23790. https://doi.org/10.1007/s11356-018-2456-6.

    Article  CAS  Google Scholar 

  • Tomar, R. S., & Jajoo, A. (2013). A quick investigation of the detrimental effects of environmental pollutant polycyclic aromatic hydrocarbon fluoranthene on the photosynthetic efficiency of wheat (Triticum aestivum). Ecotoxicology, 22(8), 1313–1318. https://doi.org/10.1007/s10646-013-1118-1.

    Article  CAS  Google Scholar 

  • Tomar, R. S., & Jajoo, A. (2015). Photomodified fluoranthene exerts more harmful effects as compared to intact fluoranthene by inhibiting growth and photosynthetic processes in wheat. Ecotoxicology and Environmental Safety, 122, 31–36. https://doi.org/10.1016/j.ecoenv.2015.07.002.

    Article  CAS  Google Scholar 

  • Tomar, R. S., Sharma, A., & Jajoo, A. (2015). Assessment of phytotoxicity of anthracene in soybean (Glycine max) with a quick method of chlorophyll fluorescence. Plant Biology, 17(4), 870–876. https://doi.org/10.1111/plb.12302.

    Article  CAS  Google Scholar 

  • Vasilenok, V., Korovin, E., Aleksashkina, E., & Kochegarova, T. (2019). Effective functioning of enterprises with regard to environmental risks. In O. Kalinina (Ed.), E3S web of conferences (Vol. 110, p. 02062). EDP Sciences. https://doi.org/10.1051/e3sconf/201911002062.

  • Xu, J., Wang, H., He, Y., & Ma, B. (2018). Toxicity, adsorption, and dissipation of polycyclic aromatic hydrocarbons in soil. In Y. Luo Y, C. Tu (Eds.), Twenty years of research and development on soil pollution and remediation in China (pp. 605–628). Springer, Singapore. https://doi.org/10.1007/978-981-10-6029-8_37.

  • Yakovleva, E.V., & Beznosikov, V.A. (2016). Assessment of pollution indices of tundra phytocenoses by polycyclic aromatic hydrocarbons. Povolzhsky Journal of Ecology, (3), 352-366. https://doi.org/10.18500/1684-7318-2016-3-352-366 (in Russian).

  • Zaalishvili, G. V., Khatisashvili, G. A., Ugrkhelidze, D. S., Gordeziani, M. S., & Kvesitadze, G. I. (2000). Plant potential for detoxification. Applied Biochemistry and Microbiology, 36(5), 443–451. https://doi.org/10.1007/BF02731887.

    Article  Google Scholar 

  • Zhang, H., Hu, J., Qi, Y., Li, C., Chen, J., Wang, X., et al. (2017). Emission characterization, environmental impact, and control measure of PM2. 5 emitted from agricultural crop residue burning in China. Journal of Cleaner Production, 149, 629–635. https://doi.org/10.1016/j.jclepro.2017.02.092.

    Article  CAS  Google Scholar 

  • Zhang, J., & Fan, S. K. (2016). Influence of PAH speciation in soils on vegetative uptake of PAHs using successive extraction. Journal of Hazardous Materials, 320, 114–122. https://doi.org/10.1016/j.jhazmat.2016.08.024.

    Article  CAS  Google Scholar 

  • Zhidkin, A., Koshovskii, T., & Gennadiev, A. (2016, April). Contamination of agricultural lands by polycyclic aromatic hydrocarbons (Tver region, Russia). In EGU GeneralAssemblyConferenceAbstracts (Vol. 18).

Download references

Acknowledgements

The work was supported by the Russian Science Foundation, Project no. 19-74-10046.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aleksei G. Fedorenko.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fedorenko, A.G., Chernikova, N., Minkina, T. et al. Effects of benzo[a]pyrene toxicity on morphology and ultrastructure of Hordeum sativum. Environ Geochem Health 43, 1551–1562 (2021). https://doi.org/10.1007/s10653-020-00647-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00647-7

Keywords

Navigation