Skip to main content

Advertisement

Log in

Marine Microbial Response to Heavy Metals: Mechanism, Implications and Future Prospect

  • Focused Review
  • Published:
Bulletin of Environmental Contamination and Toxicology Aims and scope Submit manuscript

Abstract

Growing levels of pollution in marine environment has been a matter of serious concern in recent years. Increased levels of heavy metals due to improper waste disposal has led to serious repercussions. This has increased occurrences of heavy metals in marine fauna. Marine microbes are large influencers of nutrient cycling and productivity in oceans. Marine bacteria show altered metabolism as a strategy against metal induced stress. Understanding these strategies used to avoid toxic effects of heavy metals can help in devising novel biotechnological applications for ocean clean-up. Using biological tools for remediation has advantages as it does not involve harmful chemicals and it shows greater flexibility to environmental fluctuations. This review provides a comprehensive insight on marine microbial response to heavy metals and sheds light on existing knowledge about and paves for new avenues in research for bioremediation strategies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2

Adapted from Nies 1999)

Fig. 3

Adapted from Nies 1999)

Fig. 4

Adapted from Nies 1999)

Fig. 5

(Adapted from Ramírez-Díaz et al. 2008)

Similar content being viewed by others

References

  • Abd-Elnaby H, Abou-Elela GM, El-Sersy NA (2011) Cadmium resisting bacteria in Alexandria Eastern Harbor (Egypt) and optimization of cadmium bioaccumulation by Vibrio harveyi. Afr J Biotechnol 10(17):3412–3423

    CAS  Google Scholar 

  • Abu-Dieyeh MH, Alduroobi HM, Al-Ghouti MA (2019) Potential of mercury-tolerant bacteria for bio-uptake of mercury leached from discarded fluorescent lamps. J Environ Manage 237:217–227

    CAS  Google Scholar 

  • Ackerley DF, Barak Y, Lynch SV, Curtin J, Matin A (2006) Effect of chromate stress on Escherichia coli K-12. J Bacteriol 188(9):3371–3381

    CAS  Google Scholar 

  • Ahmad MK, Islam S, Rahman MS, Haque MR, Islam MM (2010) Heavy metals in water, sediment and some fishes of Buriganga River Bangladesh. Int J Environ Res 4(2):321–332

    CAS  Google Scholar 

  • Aislabie J, Loutit MW (1984) The effect of effluent high in chromium on marine sediment aerobic heterotrophic bacteria. Mar Environ Res 13(1):69–79

    CAS  Google Scholar 

  • Allen RC, Tu YK, Nevarez MJ, Bobbs AS, Friesen JW, Lorsch JR, McCauley JA, Voet JG, Hamlett NV (2013) The mercury resistance (mer) operon in a marine gliding flavobacterium, Tenacibaculum discolor 9A5. FEMS Microbiol Ecol 83(1):135–148

    CAS  Google Scholar 

  • Altenburger R (2010) 1: understanding combined effects for metal co-exposure in ecotoxicology. In Metal ions in toxicology: effects, interactions, interdependencies. Royal Society of Chemistry Great Britain, pp 1–26

  • Andersen OS (1978) Permeability properties of unmodified lipid bilayer membranes. In: Tosteson DC (ed) Concepts and models. Springer, Berlin, Heidelberg, pp 369–446

    Google Scholar 

  • Aşçı Y, Nurbaş M, Açıkel YS (2008) A comparative study for the sorption of Cd (II) by soils with different clay contents and mineralogy and the recovery of Cd (II) using rhamnolipid biosurfactant. J Hazard Mater 154(1–3):663–673

    Google Scholar 

  • Ayangbenro A, Babalola O (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Google Scholar 

  • Babich H, Stotzky G (1978) Effects of cadmium on the biota: influence of environmental factors. In Advances in applied microbiology, vol. 23, Academic Press, pp. 55–117

  • Banat IM, Franzetti A, Gandolfi I, Bestetti G, Martinotti MG, Fracchia L, Smyth TJ, Marchant R (2010) Microbial biosurfactants production, applications and future potential. Appl Microbiol Biotechnol 87(2):427–444

    CAS  Google Scholar 

  • Barnhart J (1997) Occurrences, uses, and properties of chromium. Regul Toxicol Pharmacol 26(1):S3–S7

    CAS  Google Scholar 

  • Barton LL, Fauque GD (2009) Biochemistry, physiology and biotechnology of sulfate-reducing bacteria. Adv Appl Microbiol 68:41–98

    CAS  Google Scholar 

  • Beveridge, T. J. (1981). Ultrastructure, chemistry, and function of the bacterial wall. In International review of cytology, vol 72, Academic Press, New York, pp. 229–317

  • Bhaskar PV, Bhosle NB (2006) Bacterial extracellular polymeric substance (EPS): a carrier of heavy metals in the marine food-chain. Environ Int 32(2):191–198

    CAS  Google Scholar 

  • Bhattacharyya D, Jumawan AB Jr, Grieves RB (1979) Separation of toxic heavy metals by sulfide precipitation. Sep Sci Technol 14(5):441–452

    CAS  Google Scholar 

  • Bhide JV, Dhakephalkar PK, Paknikar KM (1996) Microbiological process for the removal of Cr (VI) from chromate-bearing cooling tower effluent. Biotechnol Lett 18(6):667–672

    CAS  Google Scholar 

  • Birch L, Bachofen R (1990) Complexing agents from microorganisms. Experientia 46(8):827–834

    CAS  Google Scholar 

  • Bowen HJM (1979) Environmental chemistry of the elements. Academic Press, New York

    Google Scholar 

  • Bridgewater LC, Manning FC, Woo ES, Patierno SR (1994) DNA polymerase arrest by adducted trivalent chromium. Mol Carcinog 9(3):122–133

    CAS  Google Scholar 

  • Broussard LA, Hammett-Stabler CA, Winecker RE, Ropero-Miller JD (2002) The toxicology of mercury. Lab Med 33(8):614–625

    Google Scholar 

  • Bruins MR, Kapil S, Oehme FW (2000) Microbial resistance to metals in the environment. Ecotoxicol Environ Saf 45(3):198–207

    CAS  Google Scholar 

  • Buccolieri A, Buccolieri G, Cardellicchio N, Dell'Atti A, Di Leo A, Maci A (2006) Heavy metals in marine sediments of Taranto Gulf (Ionian Sea, southern Italy). Mar Chem 99(1–4):227–235

    CAS  Google Scholar 

  • Calomiris JJ, Armstrong JL, Seidler RJ (1984) Association of metal tolerance with multiple antibiotic resistance of bacteria isolated from drinking water. Appl Environ Microbiol 47(6):1238–1242

    CAS  Google Scholar 

  • Calvo J, Jung H, Meloni G (2017) Copper metallothioneins. IUBMB Life 69(4):236–245

    CAS  Google Scholar 

  • Carson R (1962) Silent spring. Houghton Mifflin Company, Boston

    Google Scholar 

  • Cervantes C, Campos-García J (2007) Reduction and efflux of chromate by bacteria. In: Nies DH, Silver S (eds) Molecular microbiology of heavy metals. Springer, Berlin, Heidelberg, pp 407–419

    Google Scholar 

  • Cervantes C, Campos-García J, Devars S, Gutiérrez-Corona F, Loza-Tavera H, Torres-Guzmán JC, Moreno-Sánchez R (2001) Interactions of chromium with microorganisms and plants. FEMS Microbiol Rev 25(3):335–347

    CAS  Google Scholar 

  • Clarkson TW (1997) The toxicology of mercury. Crit Rev Clin Lab Sci 34(4):369–403

    CAS  Google Scholar 

  • Dash HR, Das S (2012) Bioremediation of mercury and the importance of bacterial mer genes. Int Biodeterior Biodegradation 75:207–213

    CAS  Google Scholar 

  • Dash HR, Basu S, Das S (2017) Evidence of mercury trapping in biofilm-EPS and mer operon-based volatilization of inorganic mercury in a marine bacterium Bacillus cereus BW-201B. Arch Microbiol 199(3):445–455

    CAS  Google Scholar 

  • Dash HR, Mangwani N, Das S (2014) Characterization and potential application in mercury bioremediation of highly mercury-resistant marine bacterium Bacillus thuringiensis PW-05. Environ Sci Pollut Res 21(4):2642–2653

    CAS  Google Scholar 

  • De Carvalho CC, Fernandes P (2010) Production of metabolites as bacterial responses to the marine environment. Mar Drugs 8(3):705–727

    Google Scholar 

  • De J, Ramaiah N, Vardanyan L (2008) Detoxification of toxic heavy metals by marine bacteria highly resistant to mercury. Mar Biotechnol 10(4):471–477

    CAS  Google Scholar 

  • De J, Ramaiah N, Mesquita A, Verlekar XN (2003) Tolerance to various toxicants by marine bacteria highly resistant to mercury. Mar Biotechnol 5(2):185–193

    CAS  Google Scholar 

  • Decho AW (1990) Microbial exopolymer secretions in ocean environments: their role (s) in food webs and marine processes. Oceanogr Mar Biol 28(737153):9–16

    Google Scholar 

  • Delbarre-Ladrat C, Sinquin C, Lebellenger L, Zykwinska A, Colliec-Jouault S (2014) Exopolysaccharides produced by marine bacteria and their applications as glycosaminoglycan-like molecules. Front Chem 2:85

    Google Scholar 

  • Delgado-Alvarez C, Ruelas-Inzunza J, Escobar-Sánchez O, Covantes-Rosales R, Pineda-Pérez IB, Osuna-Martínez CC, Aguilar-Júarez M, Osuna-López J, Voltolina D, Frías-Espericueta MG (2019) Metal concentrations in age-groups of the Clam, Megapitaria squalida, from a Coastal Lagoon in Mexico: a human health risk assessment. Bull Environ Contam Toxicol 103:1–6

    Google Scholar 

  • Deng X, Wang P (2012) Isolation of marine bacteria highly resistant to mercury and their bioaccumulation process. Biores Technol 121:342–347

    CAS  Google Scholar 

  • DeSilva TM, Veglia G, Porcelli F, Prantner AM, Opella SJ (2002) Selectivity in heavy metal-binding to peptides and proteins. Biopolymers 64(4):189–197

    CAS  Google Scholar 

  • Dey S, Rosen BP (1995) Dual mode of energy coupling by the oxyanion-translocating ArsB protein. J Bacteriol 177(2):385–389

    CAS  Google Scholar 

  • Eggleton J, Thomas KV (2004) A review of factors affecting the release and bioavailability of contaminants during sediment disturbance events. Environ Int 30(7):973–980

    CAS  Google Scholar 

  • El-Helow ER, Sabry SA, Amer RM (2000) Cadmium biosorption by a cadmium resistant strain of Bacillus thuringiensis: regulation and optimization of cell surface affinity for metal cations. Biometals 13(4):273–280

    CAS  Google Scholar 

  • Fong JC, De Guzman BE, Lamborg CH, Sison-Mangus MP (2019) The mercury-tolerant microbiota of the zooplankton Daphnia aids in host survival and maintains fecundity under mercury stress. Environ Sci Technol 15:14688

    Google Scholar 

  • Freitas F, Alves VD, Reis MA (2011) Advances in bacterial exopolysaccharides: from production to biotechnological applications. Trends Biotechnol 29(8):388–398

    CAS  Google Scholar 

  • Fu F, Wang Q (2011) Removal of heavy metal ions from wastewaters: a review. J Environ Manage 92(3):407–418

    CAS  Google Scholar 

  • Gadd GM (2009) Biosorption: critical review of scientific rationale, environmental importance and significance for pollution treatment. J Chem Technol Biotechnol 84(1):13–28

    CAS  Google Scholar 

  • Gionfriddo CM, Tate MT, Wick RR, Schultz MB, Zemla A, Thelen MP, Schofield R, Krabbenhoft DP, Holt KE, Moreau JW (2016) Microbial mercury methylation in Antarctic sea ice. Nat Microbiol 1(10):16127

    CAS  Google Scholar 

  • Giripunje MD, Fulke AB, Meshram PU (2015) Remediation techniques for heavy-metals contamination in lakes: a mini-review. Clean-Soil, Air, Water 43(9):1350–1354

    CAS  Google Scholar 

  • Giripunje MD, Fulke AB, Meshram PU (2016) Assessment of heavy metals and estimation of human health risk in Tilapia fish from Naik Lake of Nagpur, India. J Toxicol Environ Health Sci 8(4):22–29

    Google Scholar 

  • Gnanamani A, Kavitha V, Radhakrishnan N, Rajakumar GS, Sekaran G, Mandal AB (2010) Microbial products (biosurfactant and extracellular chromate reductase) of marine microorganism are the potential agents reduce the oxidative stress induced by toxic heavy metals. Colloids Surf B 79(2):334–339

    CAS  Google Scholar 

  • Granger J, Price NM (1999) The importance of siderophores in iron nutrition of heterotrophic marine bacteria. Limnol Oceanogr 44(3):541–555

    CAS  Google Scholar 

  • Gutiérrez JC, de Francisco P, Amaro F, Díaz S, Martín-González A (2019) Structural and functional diversity of microbial metallothionein genes. In: Microbial diversity in the genomic era, Academic Press, pp. 387–407

  • Gworek B, Bemowska-Kałabun O, Kijeńska M, Wrzosek-Jakubowska J (2016) Mercury in marine and oceanic waters—a review. Water Air Soil Pollut 227(10):371

    Google Scholar 

  • Harithsa S, Kerkar S, Bharathi PL (2002) Mercury and lead tolerance in hypersaline sulfate-reducing bacteria. Mar Pollut Bull 44(8):726–732

    CAS  Google Scholar 

  • Hassan SH, Awad YM, Kabir MH, Oh SE, Joo JH (2010) Bacterial biosorption of heavy metals. Biotechnology, 79–110

  • Hawkes SJ (1997) What is a" heavy metal”? J Chem Educ 74(11):1374

    CAS  Google Scholar 

  • Higham DP, Sadler PJ, Scawen MD (1984) Cadmium-resistant Pseudomonas putida synthesizes novel cadmium proteins. Science 225(4666):1043–1046

    CAS  Google Scholar 

  • Horta-Puga G, Carriquiry JD (2014) The last two centuries of lead pollution in the southern Gulf of Mexico recorded in the annual bands of the scleractinian coral Orbicella faveolata. Bull Environ Contam Toxicol 92(5):567–573

    CAS  Google Scholar 

  • Hoyle BD, Beveridge TJ (1984) Metal binding by the peptidoglycan sacculus of Escherichia coli K-12. Can J Microbiol 30(2):204–211

    CAS  Google Scholar 

  • Iyer A, Mody K, Jha B (2004) Accumulation of hexavalent chromium by an exopolysaccharide producing marine Enterobactercloaceae. Mar Pollut Bull 49(11–12):974–977

    CAS  Google Scholar 

  • Iyer A, Mody K, Jha B (2005) Biosorption of heavy metals by a marine bacterium. Mar Pollut Bull 50(3):340–343

    CAS  Google Scholar 

  • Jafarzade M, Mohamad S, Usup G, Ahmad A (2012) Heavy-metal tolerance and antibiotic susceptibility of red pigmented bacteria isolated from marine environment. Nat Resour 3(04):171

    Google Scholar 

  • Jaishankar M, Tseten T, Anbalagan N, Mathew BB, Beeregowda KN (2014) Toxicity, mechanism and health effects of some heavy metals. Interdisc Toxicol 7(2):60–72

    Google Scholar 

  • Jaysankar D, Ramaiah N, Bhosle NB, Garg A, Vardanyan L, Nagle VL, Fukami K (2007) Potential of mercury-resistant marine bacteria for detoxification of chemicals of environmental concern. Microbes Environ 22(4):336–345

    Google Scholar 

  • Ji G, Silver S (1992) Reduction of arsenate to arsenite by the ArsC protein of the arsenic resistance operon of Staphylococcus aureus plasmid pI258. Proc Natl Acad Sci 89(20):9474–9478

    CAS  Google Scholar 

  • Juwarkar AA, Nair A, Dubey KV, Singh SK, Devotta S (2007) Biosurfactant technology for remediation of cadmium and lead contaminated soils. Chemosphere 68(10):1996–2002

    CAS  Google Scholar 

  • Kaur P, Rosen BP (1992) Plasmid-encoded resistance to arsenic and antimony. Plasmid 27(1):29–40

    CAS  Google Scholar 

  • Keil DE, Berger-Ritchie J, McMillin GA (2011) Testing for toxic elements: a focus on arsenic, cadmium, lead, and mercury. Lab Med 42(12):735–742

    Google Scholar 

  • Khambhaty Y, Mody K, Basha S, Jha B (2009) Biosorption of Cr (VI) onto marine Aspergillus niger: experimental studies and pseudo-second order kinetics. World J Microbiol Biotechnol 25(8):1413

    CAS  Google Scholar 

  • Krężel A, Maret W (2007) Different redox states of metallothionein/thionein in biological tissue. Biochem J 402(3):551–558

    Google Scholar 

  • Laddaga RA, Silver S (1985) Cadmium uptake in Escherichia coli K-12. J Bacteriol 162(3):1100–1105

    CAS  Google Scholar 

  • Langford NJ, Ferner RE (1999) Toxicity of mercury. J Hum Hypertens 13(10):651

    CAS  Google Scholar 

  • Lee CS, Fisher NS (2017) Bioaccumulation of methylmercury in a marine copepod. Environ Toxicol Chem 36(5):1287–1293

    CAS  Google Scholar 

  • Lee JU, Lee SW, Kim KW, Yoon CH (2005) The effects of different carbon sources on microbial mediation of arsenic in arsenic-contaminated sediment. Environ Geochem Health 27(2):159–168

    CAS  Google Scholar 

  • Liao W, Feng C, Liu N, Liu D, Yan Z, Bai Y, Xie H, Shi H, Wu D (2019) Influence of hardness and dissolved organic carbon on the acute toxicity of copper to zebrafish (Danio rerio) at different life stages. Bull Environ Contam Toxicol 103:1–7

    Google Scholar 

  • Loaëc M, Olier R, Guezennec J (1997) Uptake of lead, cadmium and zinc by a novel bacterial exopolysaccharide. Water Res 31(5):1171–1179

    Google Scholar 

  • Mandal BK, Suzuki KT (2002) Arsenic round the world: a review. Talanta 58(1):201–235

    CAS  Google Scholar 

  • Marques CR (2016) Bio-rescue of marine environments: On the track of microbially-based metal/metalloid remediation. Sci Total Environ 565:165–180

    CAS  Google Scholar 

  • Maulvault AL, Anacleto P, Lourenço HM, Carvalho ML, Nunes ML, Marques A (2012) Nutritional quality and safety of cooked edible crab (Cancer pagurus). Food Chem 133(2):277–283

    CAS  Google Scholar 

  • Misra TK (1992) Bacterial resistances to inorganic mercury salts and organomercurials. Plasmid 27(1):4–16

    CAS  Google Scholar 

  • Mitra RS, Bernstein IA (1978) Single-strand breakage in DNA of Escherichia coli exposed to Cd2+. J Bacteriol 133(1):75–80

    CAS  Google Scholar 

  • Mohapatra RK, Parhi PK, Pandey S, Bindhani BK, Thatoi H, Panda CR (2019) Active and passive biosorption of Pb (II) using live and dead biomass of marine bacterium Bacillus xiamenensis PbRPSD202: kinetics and isotherm studies. J Environ Manage 247:121–134

    CAS  Google Scholar 

  • Mohseni M, Abbaszadeh J, Maghool SS, Chaichi MJ (2018) Heavy metals detection using biosensor cells of a novel marine luminescent bacterium Vibrio sp. MM1 isolated from the Caspian Sea. Ecotoxicol Environ Saf 148:555–560

    CAS  Google Scholar 

  • Mukkata K, Kantachote D, Wittayaweerasak B, Techkarnjanaruk S, Mallavarapu M, Naidu R (2015) Distribution of mercury in shrimp ponds and volatilization of Hg by isolated resistant purple nonsulfur bacteria. Water Air Soil Pollut 226(5):148

    Google Scholar 

  • Naccari C, Cicero N, Ferrantelli V, Giangrosso G, Vella A, Macaluso A, Naccari F, Dugo G (2015) Toxic metals in pelagic, benthic and demersal fish species from Mediterranean FAO zone 37. Bull Environ Contam Toxicol 95(5):567–573

    CAS  Google Scholar 

  • Nagvenkar GS, Ramaiah N (2010) Arsenite tolerance and biotransformation potential in estuarine bacteria. Ecotoxicology 19(4):604–613

    CAS  Google Scholar 

  • Nies DH (1999) Microbial heavy-metal resistance. Appl Microbiol Biotechnol 51(6):730–750

    CAS  Google Scholar 

  • Nies DH, Silver S (1995) Ion efflux systems involved in bacterial metal resistances. J Ind Microbiol 14(2):186–199

    CAS  Google Scholar 

  • Olafson RW, Abel K, Sim RG (1979) Prokaryotic metallothionein: preliminary characterization of a blue-green alga heavy metal-binding protein. Biochem Biophys Res Commun 89(1):36–43

    CAS  Google Scholar 

  • Osborn AM, Bruce KD, Strike P, Ritchie DA (1995) Sequence conservation between regulatory mercury resistance genes in bacteria from mercury polluted and pristine environments. Syst Appl Microbiol 18(1):1–6

    CAS  Google Scholar 

  • Pacwa-Płociniczak M, Płaza GA, Piotrowska-Seget Z, Cameotra SS (2011) Environmental applications of biosurfactants: recent advances. Int J Mol Sci 12(1):633–654

    Google Scholar 

  • Papadopoulou B, Roy G, Dey S, Rosen BP, Ouellette M (1994) Contribution of the Leishmania P-glycoprotein-related gene ltpgpA to oxyanion resistance. J Biol Chem 269(16):11980–11986

    CAS  Google Scholar 

  • Park JD, Zheng W (2012) Human exposure and health effects of inorganic and elemental mercury. J Prev Med Public Health 45(6):344

    Google Scholar 

  • Pechova A, Pavlata L (2007) Chromium as an essential nutrient: a review. Veterinarni Medicina-Praha- 52(1):1

    CAS  Google Scholar 

  • Pempkowiak J, Sikora A, Biernacka E (1999) Speciation of heavy metals in marine sediments vs their bioaccumulation by mussels. Chemosphere 39(2):313–321

    CAS  Google Scholar 

  • Petukh M, Alexov E (2014) Ion binding to biological macromolecules. Asian J Phys 23(5):735

    Google Scholar 

  • Quigley MS, Santschi PH, Hung CC, Guo L, Honeyman BD (2002) Importance of acid polysaccharides for 234Th complexation to marine organic matter. Limnol Oceanogr 47(2):367–377

    CAS  Google Scholar 

  • Rainbow PS, Furness RW (1990) Heavy metals in the marine environment. CRC Press, Boca Raton, pp 1–3

    Google Scholar 

  • Rajendran P, Muthukrishnan J, Gunasekaran P (2003) Microbes in heavy metal remediation. Indian J Exp Biol 41:935–944

    CAS  Google Scholar 

  • Rajkumar M, Ae N, Prasad MNV, Freitas H (2010) Potential of siderophore-producing bacteria for improving heavy metal phytoextraction. Trends Biotechnol 28(3):142–149

    CAS  Google Scholar 

  • Ramírez-Díaz MI, Díaz-Pérez C, Vargas E, Riveros-Rosas H, Campos-García J, Cervantes C (2008) Mechanisms of bacterial resistance to chromium compounds. Biometals 21(3):321–332

    Google Scholar 

  • Roldán-Wong NT, Kidd KA, Ceballos-Vázquez BP, Arellano-Martínez M (2018) Is there a risk to humans from consuming octopus species from sites with high environmental levels of metals? Bull Environ Contam Toxicol 101(6):796–802

    Google Scholar 

  • Ron EZ, Rosenberg E (2001) Natural roles of biosurfactants: minireview. Environ Microbiol 3(4):229–236

    CAS  Google Scholar 

  • Rouch DA, Lee BT, Morby AP (1995) Understanding cellular responses to toxic agents: a model for mechanism-choice in bacterial metal resistance. J Ind Microbiol 14(2):132–141

    CAS  Google Scholar 

  • Rousk J, Rousk K (2018) Responses of microbial tolerance to heavy metals along a century-old metal ore pollution gradient in a subarctic birch forest. Environ Pollut 240:297–305

    CAS  Google Scholar 

  • Sabry SA, Ghozlan HA, Abou-Zeid DM (1997) Metal tolerance and antibiotic resistance patterns of a bacterial population isolated from sea water. J Appl Microbiol 82(2):245–252

    CAS  Google Scholar 

  • Saha M, Sarkar S, Sarkar B, Sharma BK, Bhattacharjee S, Tribedi P (2016) Microbial siderophores and their potential applications: a review. Environ Sci Pollut Res 23(5):3984–3999

    CAS  Google Scholar 

  • Saito MA, Moffett JW, Chisholm SW, Waterbury JB (2002) Cobalt limitation and uptake in Prochlorococcus. J Limnol Oceanogr 47(6):1629–1636

    CAS  Google Scholar 

  • Sakpirom J, Kantachote D, Siripattanakul-Ratpukdi S, McEvoy J, Khan E (2019) Simultaneous bioprecipitation of cadmium to cadmium sulfide nanoparticles and nitrogen fixation by Rhodopseudomonas palustris TN110. Chemosphere 223:455–464

    CAS  Google Scholar 

  • Saranya K, Sundaramanickam A, Shekhar S, Swaminathan S (2019) Biosorption of mercury by Bacillus thuringiensis (CASKS3) isolated from mangrove sediments of southeast coast India. Indian J Geo-Mar Sci 48:143

    Google Scholar 

  • Schartup AT, Qureshi A, Dassuncao C, Thackray CP, Harding G, Sunderland EM (2017) A model for methylmercury uptake and trophic transfer by marine plankton. Environ Sci Technol 52(2):654–662

    Google Scholar 

  • Segura FR, Nunes EA, Paniz FP, Paulelli ACC, Rodrigues GB, Braga GÚL, Batista BL (2016) Potential risks of the residue from Samarco's mine dam burst (Bento Rodrigues, Brazil). Environ Pollut 218:813–825

    CAS  Google Scholar 

  • Shah S, Damare SR (2018) Differential protein expression in a marine-derived Staphylococcus sp NIOSBK35 in response to arsenic (III). 3 Biotech 8(6):287

    Google Scholar 

  • Silver S (1996) Bacterial resistances to toxic metal ions-a review. Gene 179(1):9–19

    CAS  Google Scholar 

  • Silver S, Misra TK (1988) Plasmid-mediated heavy metal resistances. Ann Rev Microbiol 42(1):717–743

    CAS  Google Scholar 

  • Silver S, Phung LT (1996) Bacterial heavy metal resistance: new surprises. Annu Rev Microbiol 50(1):753–789

    CAS  Google Scholar 

  • Silver S, Walderhaug M (1992) Gene regulation of plasmid-and chromosome-determined inorganic ion transport in bacteria. Microbiol Mol Biol Rev 56(1):195–228

    CAS  Google Scholar 

  • Suresh Kumar A, Mody K, Jha B (2007) Bacterial exopolysaccharides–a perception. J Basic Microbiol 47(2):103–117

    Google Scholar 

  • Takeuchi M, Kawahata H, Gupta LP, Kita N, Morishita Y, Ono Y, Komai T (2007) Arsenic resistance and removal by marine and non-marine bacteria. J Biotechnol 127(3):434–442

    CAS  Google Scholar 

  • Trevors JT, Stratton GW, Gadd GM (1986) Cadmium transport, resistance, and toxicity in bacteria, algae, and fungi. Can J Microbiol 32(6):447–464

    CAS  Google Scholar 

  • Valls M, De Lorenzo V (2002) Exploiting the genetic and biochemical capacities of bacteria for the remediation of heavy metal pollution. FEMS Microbiol Rev 26(4):327–338

    CAS  Google Scholar 

  • Vicente AD, Aviles M, Codina JC, Borrego JJ, Romero P (1990) Resistance to antibiotics and heavy metals of Pseudomonas aeruginosa isolated from natural waters. J Appl Bacteriol 68(6):625–632

    Google Scholar 

  • Vijayaraj AS, Mohandass C, Joshi D (2019) Microremediation of tannery wastewater by siderophore producing marine bacteria. Environ Technol. https://doi.org/10.1080/09593330.2019.1615995

    Article  Google Scholar 

  • Wang CL, Michels PC, Dawson SC, Kitisakkul S, Baross JA, Keasling JD, Clark DS (1997) Cadmium removal by a new strain of Pseudomonas aeruginosa in aerobic culture. Appl Environ Microbiol 63(10):4075–4078

    CAS  Google Scholar 

  • White C, Wilkinson SC, Gadd GM (1995) The role of microorganisms in biosorption of toxic metals and radionuclides. Int Biodeterior Biodegradation 35(1–3):17–40

    CAS  Google Scholar 

  • Williams RJP (1981) Physico-chemical aspects of inorganic element transfer through membranes. Philos Trans R Soc Lond B 294(1071):57–74

    CAS  Google Scholar 

  • Willsky GR, Malamy MH (1980) Effect of arsenate on inorganic phosphate transport in Escherichia coli. J Bacteriol 144(1):366–374

    CAS  Google Scholar 

  • Wong CK, Wong PPK, Chu LM (2001) Heavy metal concentrations in marine fishes collected from fish culture sites in Hong Kong. Arch Environ Contam Toxicol 40(1):60–69

    CAS  Google Scholar 

  • Wu J, Rosen BP (1991) The ArsR protein is a trans-acting regulatory protein. Mol Microbiol 5(6):1331–1336

    CAS  Google Scholar 

  • Yan G, Chen X, Du S, Deng Z, Wang L, Chen S (2018) Genetic mechanisms of arsenic detoxification and metabolism in bacteria. Curr Genet 65(2):329–338

    Google Scholar 

  • Zhang J, Zeng Y, Liu B, Deng X (2020) MerP/MerT-mediated mechanism: a different approach to mercury resistance and bioaccumulation by marine bacteria. J Hazard Mater 388:122062

    CAS  Google Scholar 

  • Zhao S, Feng C, Quan W, Chen X, Niu J, Shen Z (2012) Role of living environments in the accumulation characteristics of heavy metals in fishes and crabs in the Yangtze River Estuary China. Mar Pollut Bull 64(6):1163–1171

    CAS  Google Scholar 

  • Zolgharnein H, Azmi M, Lila M, Zamri Saad M, Rahim Mutalib A, Mohamed R, Abd C (2007) Detection of plasmids in heavy metal resistance bacteria isolated from the Persian Gulf and enclosed industrial areas. Iran J Biotechnol 5(4):232–239

    CAS  Google Scholar 

  • Zwolak I (2015) Increased cytotoxicity of vanadium to CHO-K1 cells in the presence of inorganic selenium. Bull Environ Contam Toxicol 95(5):593–598

    CAS  Google Scholar 

Download references

Acknowledgements

Authors are grateful to Director, CSIR-National Institute of Oceanography (CSIR-NIO), Goa, India and Scientist-in-Charge, CSIR-NIO, Regional Centre, Mumbai for their encouragement and support. This is the CSIR-NIO contribution number 6551.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abhay B. Fulke.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fulke, A.B., Kotian, A. & Giripunje, M.D. Marine Microbial Response to Heavy Metals: Mechanism, Implications and Future Prospect. Bull Environ Contam Toxicol 105, 182–197 (2020). https://doi.org/10.1007/s00128-020-02923-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00128-020-02923-9

Keywords

Navigation