Skip to main content
Log in

Macro–Microscopic Study on the Shear Characteristics of Filled Joints with Different Roughnesses

  • Research Article-Civil Engineering
  • Published:
Arabian Journal for Science and Engineering Aims and scope Submit manuscript

Abstract

Rock-like materials and Barton’s standard joint curve were used to make filled joint specimens, and the shear characteristics of the filled joints were studied. Discrete element software was used to analyze the failure mechanism during filled joint shearing. Based on the experimental findings, a new theoretical model of joint shear strength was proposed. It was found that joint roughness has a great effect on filled joint shear failure, which is manifested via three different morphologies. The effects of the filler on the shear stress–strain curve are mainly a higher slope in the elastic phase and a lower slope in the plastic phase. The shear failure of the filled joint starts from local small damage of the filling and then progresses to failure of the bonding surface or the filling itself. Based on the proportion of the joint failure surface area to the joint surface area, a new formula for calculating shear strength is proposed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20
Fig. 21
Fig. 22

Similar content being viewed by others

References

  1. Fan, X.; Kulatilake, P.; Chen, X.: Mechanical behavior of rock-like jointed blocks with multi-non-persistent joints under uniaxial loading: a particle mechanics approach. Eng. Geol. 190, 17–32 (2015)

    Article  Google Scholar 

  2. Halakatevakis, N.; Sofianos, A.I.: Correlation of the Hoek-Brown failure criterion for a sparsely jointed rock mass with an extended plane of weakness theory. Int. J. Rock Mech. Min. Sci. 47(7), 1166–1179 (2010)

    Article  Google Scholar 

  3. Butron, C.; Axelsson, M.; Gustafson, G.: Silica sol for rock grouting: laboratory testing of strength, fracture behaviour and hydraulic conductivity. Tunn. Undergr. Space Technol. 24(6), 603–607 (2019)

    Article  Google Scholar 

  4. Li, W.T.; Yang, N.; Mei, Y.C.; Zhang, Y.H.; Wang, L.; Ma, H.Y.: Experimental investigation of the compression-bending property of the casing joints in a concrete filled steel tubular supporting arch for tunnel engineering. Tunn. Undergr. Space Technol. 96, 1–17 (2020)

    Google Scholar 

  5. De Toledo, P.E.C.; Freitas, M.H.: Laboratory testing and parameters controlling the shear strength of filled rock joints. Geotechnique 43(1), 1–19 (1993)

    Article  Google Scholar 

  6. Pereira, J.P.: Rolling friction and shear behavior of rock discontinuities filled with sand. Int. J. Rock Mech. Min. Sci. 34, 8–22 (1997)

    Google Scholar 

  7. Indraratna, B.; Welideniya, H.S.; Brown, E.T.: A shear strength model for idealized filled joints under constant normal stiffness. Geotechnique 55(3), 215–226 (2005)

    Article  Google Scholar 

  8. Indraratna, B.; Premadasa, W.; Brown, E.T.: Shear behaviour of rock joints with unsaturated infill. Geotechnique 63(15), 1356–1360 (2013)

    Article  Google Scholar 

  9. Barton, N.: Review of a new shear-strength criterion for rock joints. Eng. Geol. 7, 287–332 (1973)

    Article  Google Scholar 

  10. Barton, N.; Choubey, V.: The shear strength of rock joints in theory and practice. Rock Mech. 10, 1–54 (1977)

    Article  Google Scholar 

  11. Kulatilake, P.H.S.W.; Shou, G.; Huang, T.H.; Morgan, R.M.: New peak shear strength criterion for anisotropic rock joints. In: International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, vol. 32, no. 7, pp. 673–697 (1996)

  12. Grasselli, G.: Shear strength of rock joints based on quantified surface description. Rock Mech. Rock Eng. 39(4), 295–314 (2006)

    Article  Google Scholar 

  13. Xia, C.C.; Tang, Z.C.; Song, Y.L.; Liu, Y.M.: Analysis of relationship between joint peak shear displacement and its influence factor. Rock Soil Mech. 32, 1654–1658 (2011)

    Google Scholar 

  14. Tang, Z.C.; Liu, Q.S.; Liu, X.Y.: Shear behavior of rock joints and comparative study on shear strength criteria with three-dimensional morphology parameters. Chin. J. Geotech. Eng. 36(6), 873–879 (2014)

    Google Scholar 

  15. Tang, Z.C.; Xia, C.C.; Ding, Z.Z.: Analysis of shear deformation law for intermittent jointed rock mass. Rock Soil Mech. 32(8), 2353–2358 (2011)

    Google Scholar 

  16. Xu, D.P.; Feng, X.T.; Cui, Y.J.: A simple shear strength model for interlayer shear weakness zone. Eng. Geol. 147, 114–123 (2012)

    Article  Google Scholar 

  17. Indraratna, B.; Premadasa, W.N.; Brown, E.T.; Gens, A.; Heitor, A.: Shear strength of rock joints influenced by compacted infill. Int. J. Rock Mech. Min. Sci. 70, 296–307 (2014)

    Article  Google Scholar 

  18. Cao, P.; Deng, H.; Chen, Y.; Fu, N.: The shear characteristic and failure mechanism study of infilled rock joints with constant normal load. J. VibroEng. 21(4), 940–951 (2019)

    Article  Google Scholar 

  19. Mirzaghorbanali, A.; Nemcik, J.; Aziz, N.: Effects of cyclic loading on the shear behavior of filled rock joints under constant normal stiffness conditions. Rock Mech. Rock Eng. 47(4), 1373–1391 (2014)

    Article  Google Scholar 

  20. Jahanian, H.; Sadaghiani, M.H.: Experimental study on the shear strength of sandy clay filled regular rough rock joints. Rock Mech. Rock Eng. 48(3), 907–922 (2015)

    Article  Google Scholar 

  21. Meng, F.; Zhou, H.; Wang, Z.; Zhang, L.; Kong, L.; Li, S.; Zhang, C.: Influences of shear history and infilling on the mechanical characteristics and acoustic emissions of joints. Rock Mech. Rock Eng. 50(8), 2039–2057 (2017)

    Article  Google Scholar 

  22. Shrivastava, A.K.; Rao, K.S.: Physical modeling of shear behavior of infilled rock joints under CNL and CNS boundary conditions. Rock Mech. Rock Eng. 51(1), 101–118 (2018)

    Article  Google Scholar 

  23. Cundall, P.A.: A Computer model for simulating progressive, large-scale movements in blocky rock systems. In: Proceedings of the International Symposium on Rock Mechanics, vol. 2, pp. 2–8 (1971)

  24. Potyondy, D.O.; Cundall, P.A.: A bonded-particle model for rock. Int. J. Rock Mech. Min. Sci. 41, 1329–1364 (2004)

    Article  Google Scholar 

  25. Ghazvinian, A.; Sarfarazi, V.; Schubert, W.; Blumel, M.: A study of the failure mechanism of planar non-persistent open joints using PFC2D. Rock Mech. Rock Eng. 45(5), 677–693 (2012)

    Google Scholar 

  26. Cheng, Y.; Yang, W.; He, D.: Influence of structural plane microscopic parameters on direct shear strength. Adv. Civ. Eng. (2018). https://doi.org/10.1155/2018/9178140

    Article  Google Scholar 

  27. Bahaaddini, M.; Sharrock, G.; Hebblewhite, B.K.: Numerical investigation of the effect of joint geometrical parameters on the mechanical properties of a non-persistent jointed rock mass under uniaxial compression. Comput. Geotech. 49, 206–225 (2013)

    Article  Google Scholar 

  28. Xu, L.; Ren, Q.W.: Shear failure mechanism of infilling rock joints and its PFC simulation. Appl. Mech. Mater. 723, 317–321 (2015)

    Article  Google Scholar 

  29. Zhou, Y.; Misra, A.; Wu, S.C.; Zhang, X.P.: Macro-and mechanics of rock joint direct shear test using particle flow theory. Chin. J. Geotech. Eng. 31, 1245–1256 (2012)

    Google Scholar 

  30. Xia, C.C.; Song, Y.L.; Tang, Z.C.; Song, Y.J.; Shou, C.: Particle flow numerical simulation for shear behavior of rough joints. Chin. J. Rock Mech. Eng. 31(6), 1545–1552 (2012)

    Google Scholar 

  31. Karakus, M.; Liu, Y.; Zhang, G.; Tang, H.: A new shear strength model incorporating influence of infill materials for rock joints. Geomech. Geophys. Geo-Energy Geo-Resour. 2(3), 183–193 (2016)

    Article  Google Scholar 

  32. Xu, W.Z.; Lin, K.; Cao, R.H.: Simulation and macro-mesoscopic parameter analysis for direct shear of filled rough joints. J. Southwest Jiaotong Univ. 53(3), 548–557 (2018)

    Google Scholar 

  33. Xiao, W.G.; Dui, G.S.; Zhu, Y.P.; Chen, T.: Ren, Q: Study of constitutive model for single infilled jointed rock mass. Chin. J. Rock Mech. Eng. 29(2), 3463–3468 (2010)

    Google Scholar 

  34. Duriez, J.; Darve, F.; Donze, F.V.: A discrete modeling-based constitutive relation for filled rock joints. Int. J. Rock Mech. Min. Sci. 48(3), 458–468 (2011)

    Article  Google Scholar 

  35. Chen, J.G.; Xu, P.; Zhang, Y.; Li, Y.B.: Experimental research on pre-peak constitutive relation of filled fracture with expansive medium. Rock Soil Mech. 32(10), 2998–3002 (2011)

    Google Scholar 

  36. Shi, L.; Cai, M.F.; Zhao, J.: Fracture mechanism and experiment of infilled rock joints. J. Univ. Sci. Technol. B 34(3), 253–259 (2012)

    Google Scholar 

  37. Sun, F.T.; She, C.X.; Wan, L.T.: A peak shear strength model for cement filled rock joint. Chin. J. Rock Mech. Eng. 12, 2481–2489 (2014)

    Google Scholar 

  38. Fan, W.C.; Cao, P.; Zhang, K.: Experimental study on failure modes of jointed rock materials under different compressive shear stress ratios. J. Cent. South Univ. 3, 926–932 (2015)

    Google Scholar 

  39. Zheng, W.X.; Zhao, Y.L.; Wang, M.: Experimental study on rock like material with crack under uniaxial compression. J. Hunan Univ. Sci. Technol. 28(4), 1–6 (2013)

    Google Scholar 

  40. Asheghi, R.; Hosseini, S.A.; Sanei, M.; Abbaszadeh Shahri, A.: Updating the neural network sediment load models using different sensitivity analysis methods: a regional application. J. Hydroinform. (2020). https://doi.org/10.2166/hydro.2020.098

    Article  Google Scholar 

  41. Han, W.; Li, G.; Sun, Z.; Luan, H.; Liu, C.; Wu, X.: Numerical investigation of a foundation pit supported by a composite soil nailing structure. Symmetry 12(2), 252 (2020)

    Article  Google Scholar 

  42. Shi, C.; Xu, W.Y.: Techniques and Practice of Numerical Simulation of Particle Flow. China Building Industry Press, Beijing (2015)

    Google Scholar 

  43. Cao, R.H.; Cao, P.; Lin, H.; Zhang, K.; Tan, X.W.: Particle flow analysis of direct shear tests on joints with different roughnesses. Rock Soil Mech. 34(2), 456–463 (2013)

    Google Scholar 

  44. Abbaszadeh Shahri, A.; Larsson, S.; Johansson, F.: Updated relations for the uniaxial compressive strength of marlstones based on P-wave velocity and point load index test. Innov. Infrastruct. Solut. 1, 17 (2016). https://doi.org/10.1007/s41062-016-0016-9

    Article  Google Scholar 

  45. Yang, B.; Jiao, Y.; Lei, S.: A study on the effects of microparameters on macroproperties for specimens created by bonded particles. Eng. Comput. 23(6), 607–631 (2006)

    Article  MATH  Google Scholar 

  46. Ding, X.; Zhang, L.; Zhu, H.; Zhang, Q.: Effect of model scale and particle size distribution on PFC3D simulation results. Rock Mech. Rock Eng. 47(6), 2139–2156 (2014)

    Article  Google Scholar 

  47. Zhang, G.; Karakus, M.; Tang, H.; Ge, Y.; Zhang, L.: A new method estimating the 2D joint roughness coefficient for discontinuity surfaces in rock masses. Int. J. Rock Mech. Min. Sci. 72, 191–198 (2014)

    Article  Google Scholar 

  48. Wang, G.; Han, W.; Jiang, Y.; Luan, H.; Wang, K.: Coupling analysis for rock mass supported with CMC or CFC rockbolts based on viscoelastic method. Rock Mech. Rock Eng. 52(11), 4565–4588 (2019)

    Article  Google Scholar 

  49. Wang, K.; Wang, G.; Jiang, Y.; Wang, S.; Han, W.; Chen, X.: How transport properties of a shale gas reservoir change during extraction: a strain-dependent triple-porosity model. J. Pet. Sci. Eng. 180, 1088–1100 (2019)

    Article  Google Scholar 

  50. Wang, G.; Zhang, X.; Jiang, Y.; Wu, X.; Wang, S.: Rate-dependent mechanical behavior of rough rock joints. Int. J. Rock Mech. Min. Sci. 83, 231–240 (2016)

    Article  Google Scholar 

  51. Han, W.; Jiang, Y.; Luan, H.; Du, Y.; Zhu, Y.; Liu, J.: Numerical investigation on the shear behavior of rock-like materials containing fissure-holes with FEM-CZM method. Comput. Geotech. 125, 103670 (2020)

    Article  Google Scholar 

  52. Wang, X.; Yuan, W.; Yan, Y.; Zhang, X.: Scale effect of mechanical properties of jointed rock mass: a numerical study based on particle flow code. Geomech. Eng. 21(3), 259–268 (2020)

    Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (Nos. 51479108 and 41672281) and the Taishan Scholar Talent Team Support Plan for Advantaged & Unique Discipline Areas, Shanghai Municipal Science and Technology Major Project (Grant No. 2017SHZDZX02).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Gang Wang or Yang Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, G., Wu, X., Zhang, X. et al. Macro–Microscopic Study on the Shear Characteristics of Filled Joints with Different Roughnesses. Arab J Sci Eng 45, 8331–8348 (2020). https://doi.org/10.1007/s13369-020-04705-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13369-020-04705-1

Keywords

Navigation