Skip to main content
Log in

Exploitable Magnetic Anisotropy of Magnetic CrBr3 Monolayer

  • Condensed Matter
  • Published:
JETP Letters Aims and scope Submit manuscript

Abstract

We investigated the influence of Li and F adsorption on the ferromagnetism and magnetic anisotropy energy of CrBr3 monolayer based on the first-principles calculations. It is observed that Li adsorption can dramatically enhance its ferromagnetism, and tune its easy magnetization axis to the in-plane direction from original out-of-plane. The monotonic enhancement of in-plane magnetism in CrBr3 as the coverage of Li increases is attributed to electrostatic doping induced by charge transfer between Li atoms and Br atoms. By contrast, the F adsorption reduces the out-of-plane magnetism in CrBr3 as the coverage of F increases, but keeps the original easy magnetization. Our results may open new promising applications of CrBr3-based materials in spintronic devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. X. L. Liu and M. C. Hersam, Nat. Rev. Mater. 4, 669 (2019).

    Article  ADS  Google Scholar 

  2. N. M. Freitag, T. Reisch, L. A. Chizhova, P. Nemes-Incze, C. Holl, C. R. Woods, R. V. Gorbachev, Y. Cao, A. K. Geim, K. S. Novoselov, J. Burgdörfer, F. Libisch, and M. Morgenstern, Nat. Nanotechnol. 13, 392 (2018).

    Article  ADS  Google Scholar 

  3. A. Ambrosetti, N. Ferri, R. A. DiStasio, Jr., and A. Tkatchenko, Science (Washington, DC, U. S.) 351, 1171 (2016).

    Article  ADS  Google Scholar 

  4. J. B. Yu and C. X. Liu, Nat. Commun. 11, 2290 (2020).

    Article  ADS  Google Scholar 

  5. S. Chen and G. Shi, Adv. Mater. 29, 1605448 (2017).

    Article  Google Scholar 

  6. X. Zhou, J. Zhou, Y. Yu, J. Ma, X. Sun, and L. Hu, Nano 12, 1750121 (2017).

    Article  Google Scholar 

  7. M. Osada, S. Yoguchi, M. Itose, B.-W. Li, Y. Ebina, K. Fukuda, Y. Kotani, K. Ono, S. Ueda, and T. Sasaki, Nanoscale 6, 14227 (2014).

    Article  ADS  Google Scholar 

  8. S. Dutta, A. K. Manna, and S. K. Pati, Phys. Rev. Lett. 102, 096601 (2009).

    Article  ADS  Google Scholar 

  9. O. V. Yazyev and L. Helm, Phys. Rev. B 75, 125408 (2007).

    Article  ADS  Google Scholar 

  10. P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. van den Brink, and P. J. Kelly, Phys. Rev. B 79, 195425 (2009).

    Article  ADS  Google Scholar 

  11. M. A. McGuire, H. Dixit, V. R. Cooper, and B. C. Sales, Chem. Mater. 27, 612 (2015).

    Article  Google Scholar 

  12. B. Huang, G. Clark, E. Navarro-Moratalla, D. R. Klein, R. Cheng, K. L. Seyler, D. Zhong, E. Schmidgall, M. A. McGuire, D. H. Cobden, W. Yao, D. Xiao, P. Jarillo-Herrero, and X. Xu, Nature (London, U.K.) 546, 270 (2017).

    Article  ADS  Google Scholar 

  13. C. Gong, L. Li, Z. Li, H. Ji, A. Stern, Y. Xia, T. Cao, W. Bao, C. Wang, Y. Wang, Z. Q. Qiu, R. J. Cava, S. G. Louie, J. Xia, and X. Zhang, Nature (London, U.K.) 546, 265 (2017).

    Article  ADS  Google Scholar 

  14. M. Bonilla, S. Kolekar, Y. Ma, H. C. Diaz, V. Kalappattil, R. Das, T. Eggers, H. R. Gutierrez, M. H. Phan, and M. Batzill, Nat. Nanotechnol. 13, 289 (2018). JETP LETTERS Vol. 112 No. 1 2020

    Article  ADS  Google Scholar 

  15. D. J. O’Hara, T. Zhu, A. H. Trout, A. S. Ahmed, Y. K. Luo, C. H. Lee, M. R. Brenner, S. Rajan, J. A. Gupta, D. W. McComb, and R. K. Kawakami, Nano Lett. 18, 3125 (2018).

    Article  ADS  Google Scholar 

  16. Y. Deng, Y. Yu, Y. Song, J. Zhang, N. Z. Wang, Z. Sun, Y. Yi, Y. Z. Wu, S. Wu, J. Zhu, J. Wang, X. H. Chen, and Y. Zhang, Nature (London, U.K.) 563, 94 (2018).

    Article  ADS  Google Scholar 

  17. A. F. May, D. Ovchinnikov, Q. Zheng, R. Hermann, S. Calder, B. Huang, Z. Fei, Y. Liu, X. Xu, and M. A. McGuire, ACS Nano 13, 4436 (2019).

    Article  Google Scholar 

  18. N. D. Mermin and H. Wagner, Phys. Rev. Lett. 17, 1307 (1966).

    Article  ADS  Google Scholar 

  19. D. R. Klein, D. MacNeill, J. L. Lado, D. Soriano, E. Navarro-Moratalla, K. Watanabe, T. Taniguchi, S. Manni, P. Canfield, J. Fernández-Rossier, and P. Jarillo-Herrero, Science (Washington, DC, U. S.) 360, 1218 (2018).

    Article  ADS  Google Scholar 

  20. J. Kim, K. W. Kim, B. Kim, C. J. Kang, D. B. Shin, S. H. Lee, B. C. Min, and N. Park, Nano Lett. 20, 929 (2020).

    Article  ADS  Google Scholar 

  21. C. Song, W. Xiao, L. Li, Y. Lu, P. Jiang, C. Li, A. Chen, and Z. Zhong, Phys. Rev. B 99, 214435 (2019).

    Article  ADS  Google Scholar 

  22. J. L. Lado and J. Fernândez-Rossier, 2D Mater. 4, 035002 (2017).

    Article  Google Scholar 

  23. M. A. McGuire, G. Clark, K. C. Santosh, W. MichaelChance, G. E. Jellison, Jr., V. R. Cooper, X. Xu, and B. C. Sales, Phys. Rev. Mater. 1, 014001 (2017).

    Article  Google Scholar 

  24. N. Richter, D. Weber, F. Martin, N. Singh, U. Schwingenschlögl, B. V. Lotsch, and M. Klaui, Phys. Rev. Mater. 2, 024004 (2018).

    Article  Google Scholar 

  25. L. Webster and J. A. Yan, Phys. Rev. B 98, 144411 (2018).

    Article  ADS  Google Scholar 

  26. H. H. Kim, B. W. Yang, S. W. Li, et al., Proc. Natl. Acad. Sci. U. S. A. 116, 11131 (2019).

    Article  ADS  Google Scholar 

  27. B. S. Yang, X. L. Zhang, H. X. Yang, Xi. F. Han, and Y. Yan, J. Phys. Chem. C 123, 691 (2019).

    Article  Google Scholar 

  28. J. P. Perdew, K. Burke, and M. Ernzerhof, Phys. Rev. Lett. 77, 3865 (1996).

    Article  ADS  Google Scholar 

  29. G. Kresse and J. Furthmüller, Phys. Rev. B 54, 11169 (1996).

    Article  ADS  Google Scholar 

  30. G. Kresse and D. Joubert, Phys. Rev. B 59, 1758 (1999).

    Article  ADS  Google Scholar 

  31. J. J. Yang, J. Wan, Q. Liu, R. Xu, Y. L. Sun, Z. P. Li, F. M. Gao, and M. R. Xia, J. Magn. Magn. Mater. 502, 166608 (2020).

    Article  Google Scholar 

Download references

Funding

This work was supported by the Discipline Project of Shanghai Polytechnic University (grant no. XXKZD1605), by the Natural Science Foundation of Shanghai (grant no. 19ZR1419800), by the Research Center of Opto-Electrical Sensering, the Research Center of Resource Recycling Science and Engineering, Shanghai Polytechnic University, and Gaoyuan Discipline of Shanghai-Environmental Science and Engineering (Resource Recycling Science and Engineering).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Luo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Luo, M., Shen, Y.H. Exploitable Magnetic Anisotropy of Magnetic CrBr3 Monolayer. Jetp Lett. 112, 58–63 (2020). https://doi.org/10.1134/S0021364020130019

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S0021364020130019

Navigation