Skip to main content

Advertisement

Log in

Enhanced carbide tool life by the electromagnetic coupling field for sustainable manufacturing

  • ORIGINAL ARTICLE
  • Published:
The International Journal of Advanced Manufacturing Technology Aims and scope Submit manuscript

Abstract

The effective extension of tool life while maintaining machining quality is an important research topic in advanced machining and sustainable manufacturing. Cemented carbide is widely used as the tool material in different manufacturing processes, and it has various forms and work ranges. However, the internal flaw in the tool material can induce a micro-crack which could result in the decrease of tool strength and toughness, and affect the tool life. Improving the tool cutting performance, slowing down the tool wear, and enhancing production efficiency are the eternal themes of cutting tool research. This research focused on a P10 cemented carbide tool. The influences of the electromagnetic coupling field (TEMCP) on the carbide tool life and the maximum of tool force are investigated. The correlation analysis between the TEMCP parameters and the tool life index is conducted using SPSS. The experiment proves that the TEMCP can significantly prolong the cemented carbide tool life, and that the magnetic intensity is a dominant factor. The TEMCP enriches the field technology theory and provides technical support for the sustainable manufacturing and research and development of a high-performance tool with important scientific meaning and research potential.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Wang M, Wang J (2012) CHMM for tool condition monitoring and remaining useful life prediction. Int J Adv Manuf Technol 59(5-8):463–471. https://doi.org/10.1007/s00170-011-3536-7

    Article  Google Scholar 

  2. Liao XP, Zhou G, Zhang ZK, Lu J, Ma JY (2019) Tool wear state recognition based on GWO–SVM with feature selection of genetic algorithm. Int J Adv Manuf Technol 104:1051–1063. https://doi.org/10.1007/s00170-019-03906-9

    Article  Google Scholar 

  3. Chen XZ, Li CB, Jin Y, Li L (2018) Optimization of cutting parameters with a sustainable consideration of electrical energy and embodied energy of materials. Int J Adv Manuf Technol 96:775–788. https://doi.org/10.1007/s00170-018-1647-0

    Article  Google Scholar 

  4. Krolczyk GM, Nieslony P, Legutko S (2015) Determination of tool life and research wear during duplex stainless steel turning. Arch Civ Mech Eng 15(2):347–354. https://doi.org/10.1016/j.acme.2014.05.001

    Article  Google Scholar 

  5. Liu SY, Shin YC (2019) Additive manufacturing of Ti6Al4V alloy: A review. Mater Des 164:107552. https://doi.org/10.1016/j.matdes.2018.107552

    Article  Google Scholar 

  6. Zhang JH, Liu JX (2014) Heat treatment process improvement of M42 high speed steel. Heat Treat Metals 39(11):132–134. https://doi.org/10.13251/j.issn.0254-6051.2014.11.033

    Article  Google Scholar 

  7. Fu YM, Wang SX, Huo LJ, Chen GX (2013) Experimental study for strong alternating magnetic treatment of diamond segment. J Plast Eng 20(5):126–129. https://doi.org/10.3969/j.issn.1007-2012.2013.05.025

    Article  Google Scholar 

  8. Zhao WX, Yao HM, Liang ZQ, Ma LP, Wang XB, Zhou TF (2014) Effects of pulsed magnetic field on the micro-hardness of HSS cutting tool materials. Trans Beijing Inst Technol 34(7):661–665. https://doi.org/10.15918/j.tbit1001-0645.2014.07.006

    Article  Google Scholar 

  9. Xu XL, Zheng GG, Wang HD, Wang T (2017) Research progress on the application of electro-plastic effect in materials processing. J Plast Eng 24(6):1–7. https://doi.org/10.3969/j.issn.1007-2012.2017.06.001

    Article  Google Scholar 

  10. Hosoi A, Nagahama T, Ju Y (2015) Fatigue crack healing by a controlled high density electric current field. Mater Sci Eng 533:38–42. https://doi.org/10.1016/j.msea.2011.11.024

    Article  Google Scholar 

  11. Padmakumar M, Dinakaran D, Ravikumar SG, Vijay SKS (2015) Performance evaluation of cryogenically treated tungsten carbide insert on face milling of grey cast iron. Appl Mech Mater 6:813–814. https://doi.org/10.4028/www.scientific.net/AMM.813-814.569

    Article  Google Scholar 

  12. Yip WS, To, S (2017) Tool life enhancement in dry diamond turning of titanium alloys using an eddy current damping and a magnetic field for sustainable manufacturing. J Clean Prod 168:929–939. https://doi.org/10.1016/j.jclepro.2017.09.100

    Article  Google Scholar 

  13. Zhu T, Liu Z, Shen JB (2015) Influence of magnetic treatment on wear resistance of W6Mo5Cr4V2 high speed steel. Heat Treat Metals 40(10):145–151. https://doi.org/10.13228/j.boyuan.issn1001-0963.20140443

    Article  Google Scholar 

  14. Ma L, Wang X, Liang Z, Liu Y, Zhang D (2019) Machining mechanism in pulsed magnetic treatment for micro-tools. Int J Adv Manuf Technol 101:2391–2406. https://doi.org/10.1007/s00170-018-3105-4

    Article  Google Scholar 

  15. Bataineh O, Klamecki B, Koepke BG (2003) Effect of pulsed magnetic treatment on drill wear. J Mater Process Technol 134(2):190–196. https://doi.org/10.1016/S0924-0136(02)01002-6

    Article  Google Scholar 

  16. Dehghani A, Amnieh SK, Tehrani AF, Mohammadi A (2017) Effects of magnetic assistance on improving tool wear resistance and cutting mechanisms during steel turning. Wear. 384–385:1–7. https://doi.org/10.1016/j.wear.2017.04.023

    Article  Google Scholar 

  17. Nadia JN, Aaron F, Azuddin M (2017) Influence of electromagnetic field on metal cutting in turning operation of AISI 1018 low carbon steel. Mater Sci Eng Conf Ser. https://doi.org/10.1088/1757-899X/210/1/012066

  18. Orgiu E, George J, Hutchison JA, Devaux E, Dayen JF, Doudin B, Stellacci F, Genet C, Schachenmayer J, Genes C, Pupillo G, Samorì P, Ebbesen TW (2015) Conductivity in organic semiconductors hybridized with the vacuum field. Nat Mater 14(11):1123–1129. https://doi.org/10.1038/NMAT4392

    Article  Google Scholar 

  19. Wang L, Liu J, Yang Y, Yang G, Wei C, Wang LB, Gao Y (2018) Effects of electromagnetic treatment on microstructures and properties of TC11 titanium alloy. Chin J Nonferrous Metals 28(5):931–937. https://doi.org/10.19476/j.ysxb.1004.0609.2018.05.09 (in Chinese)

    Article  Google Scholar 

  20. Li GR, Xue F, Wang HM, Zheng R, Zhu Y, Chu QZ, Cheng JF (2016) Tensile properties and microstructure of 2024 aluminum alloy subjected to the high magnetic field and external stress. Chin Phys B 25(10):106201. https://doi.org/10.1088/1674-1056/25/10/106201

    Article  Google Scholar 

  21. Liu J, Wei C, Yang G, Wang LB, Wang L, Wu XL, Jiang K, Yang Y (2018) A novel combined electromagnetic treatment on cemented carbides for improved milling and mechanical performances. Metall Mater Trans A:1–11. https://doi.org/10.1007/s11661-018-4740-y

  22. Song H, Wang ZJ, He XD (2013) Improving in plasticity of orthorhombic Ti2AlNb-based alloys sheet by high density electropulsing. Trans Nonferrous Metals Soc China 23:32–37. https://doi.org/10.1016/S1003-6326(13)62425-5

    Article  Google Scholar 

  23. Cai ZP, Duan XJ, Lin J, Zhao HY (2011) Magnetostriction varieties and stress relief caused by pulsed magnetic field. Front Mech Eng 6(3):354–358. https://doi.org/10.1007/s11465-011-0123-4

    Article  Google Scholar 

  24. Klamecki BE (2003) Residual stress reduction by pulsed magnetic treatment. J Mater Process Technol 141(3):385–394. https://doi.org/10.1016/S0924-0136(03)00387-X

    Article  Google Scholar 

  25. Sıtkı A, Hasan G, İlyas U (2015) A review of cryogenic treatment on cutting tools. Int J Adv Manuf Technol 78:1609–1627. https://doi.org/10.1007/s00170-014-6755-x

    Article  Google Scholar 

  26. Jung J, Ju Y, Morita Y, Toku Y (2016) Effect of pulsed electric current on fatigue crack in Al. Procedia Struct Integr 2:2989–2993. https://doi.org/10.1016/j.prostr.2016.06.374

    Article  Google Scholar 

  27. Ma LP, Liang ZQ, Wang XB, Zhao WX, Zhou TF, Yao HM (2013) Effect of low-frequency pulsed magnetic treatment on micro-hardness of high speed steel. Adv Mater Res 797:663–666. https://doi.org/10.4028/www.scientific.net/AMR.797.663

    Article  Google Scholar 

Download references

Funding

The authors wish to acknowledge the financial support by the National Nature Science Foundation of China (no.51705348), Sichuan science and technology program (no.2019YFG0359), and the Research Funds for the Central University (no.2019SCUH0013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jie Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yuan, M., Wang, J., Wang, M. et al. Enhanced carbide tool life by the electromagnetic coupling field for sustainable manufacturing. Int J Adv Manuf Technol 108, 3905–3914 (2020). https://doi.org/10.1007/s00170-020-05612-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00170-020-05612-3

Keywords

Navigation