Skip to main content

Advertisement

Log in

CYP1A2 rs762551 polymorphism and risk for amyotrophic lateral sclerosis

  • Original Article
  • Published:
Neurological Sciences Aims and scope Submit manuscript

Abstract

Background

Genetic variability is considered to confer susceptibility to amyotrophic lateral sclerosis (ALS). Oxidative stress is a significant contributor to ALS-related neurodegeneration, and it is regulated by cytochromes P450 (CYPs), such as CYP1A2; these are responsible for the oxidative metabolism of both exogenous and endogenous substrates in the brain, subsequently impacting ALS. The function of CYP1A2 is largely affected by genetic variability; however, the impact of CYP1A2 polymorphisms in ALS remains underinvestigated.

Objective

This study aims to examine the possible association of ALS with the CYP1A2 rs762551 polymorphism, which codes for the high inducibility form of the enzyme.

Methods

One hundred and fifty-five patients with sporadic ALS and 155 healthy controls were genotyped for the CYP1A2 rs762551. Statistical testing for the association of CYP1A2 rs762551 with risk for ALS was performed using SNPstats.

Results

The CYP1A2 rs762551 C allele was associated with a decreased risk of ALS development. In the subgroup analysis according to the ALS site of onset, an association between CYP1A2 rs762551 and limb and bulbar onset of ALS was shown. Cox proportional-hazard regression analyses revealed a significant effect of the CYP1A2 rs762551 on the age of onset of ALS.

Conclusions

Based on our results, a primarily potential link between the CYP1A2 rs762551 polymorphism and ALS risk could exist.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Morgan S, Orrell RW (2016) Pathogenesis of amyotrophic lateral sclerosis. Br Med Bull 119(1):87–98. https://doi.org/10.1093/bmb/ldw026

    Article  CAS  PubMed  Google Scholar 

  2. Chelstowska B, Kuzma-Kozakiewicz M (2020) Biochemical parameters in determination of nutritional status in amyotrophic lateral sclerosis. Neurol Sci Off J Italian Neurol Soc Italian Soc Clin Neurophysiol 41:1115–1124. https://doi.org/10.1007/s10072-019-04201-x

    Article  Google Scholar 

  3. Tarlarini C, Greco LC, Lizio A, Gerardi F, Sansone VA, Lunetta C (2019) Taste changes in amyotrophic lateral sclerosis and effects on quality of life. Neurol Sci Off J Italian Neurol Soc Italian Soc Clin Neurophysiol 40(2):399–404. https://doi.org/10.1007/s10072-018-3672-z

    Article  Google Scholar 

  4. Crockford C, Newton J, Lonergan K, Chiwera T, Booth T, Chandran S, Colville S, Heverin M, Mays I, Pal S, Pender N, Pinto-Grau M, Radakovic R, Shaw CE, Stephenson L, Swingler R, Vajda A, Al-Chalabi A, Hardiman O, Abrahams S (2018) ALS-specific cognitive and behavior changes associated with advancing disease stage in ALS. Neurology 91(15):e1370–e1380. https://doi.org/10.1212/wnl.0000000000006317

    Article  PubMed  PubMed Central  Google Scholar 

  5. Pupillo E, Messina P, Logroscino G, Beghi E (2014) Long-term survival in amyotrophic lateral sclerosis: a population-based study. Ann Neurol 75(2):287–297. https://doi.org/10.1002/ana.24096

    Article  PubMed  Google Scholar 

  6. Shindo K, Satake A, Fukao T, Ichinose Y, Takiyama Y (2020) Palpebral ptosis as the initial symptom of amyotrophic lateral sclerosis. Neurol Sci Off J Italian Neurol Soc Italian Soc Clin Neurophysiol 41(1):211–212. https://doi.org/10.1007/s10072-019-04030-y

    Article  Google Scholar 

  7. Tortarolo M, Lo Coco D, Veglianese P, Vallarola A, Giordana MT, Marcon G, Beghi E, Poloni M, Strong MJ, Iyer AM, Aronica E, Bendotti C (2017) Amyotrophic lateral sclerosis, a multisystem pathology: insights into the role of TNFalpha. Mediat Inflamm 2017:2985051–2985016. https://doi.org/10.1155/2017/2985051

    Article  CAS  Google Scholar 

  8. Yang B, Wu Y, Wang Y, Yang H, Du B, Di W, Xu X, Shi X (2020) Cerebrospinal fluid MFG-E8 as a promising biomarker of amyotrophic lateral sclerosis. Neurol Sci Off J Italian Neurol Soc Italian Soc Clin Neurophysiol. https://doi.org/10.1007/s10072-020-04416-3

  9. Wu Y, Yang X, Li X, Wang H, Wang T (2020) Elevated cerebrospinal fluid homocysteine is associated with blood–brain barrier disruption in amyotrophic lateral sclerosis patients. Neurol Sci Off J Italian Neurol Soc Italian Soc Clin Neurophysiol. https://doi.org/10.1007/s10072-020-04292-x

  10. Dardiotis E, Siokas V, Sokratous M, Tsouris Z, Michalopoulou A, Andravizou A, Dastamani M, Ralli S, Vinceti M, Tsatsakis A, Hadjigeorgiou GM (2018) Genetic polymorphisms in amyotrophic lateral sclerosis: evidence for implication in detoxification pathways of environmental toxicants. Environ Int 116:122–135. https://doi.org/10.1016/j.envint.2018.04.008

    Article  CAS  PubMed  Google Scholar 

  11. Dardiotis E, Aloizou AM, Siokas V, Patrinos GP, Deretzi G, Mitsias P, Aschner M, Tsatsakis A (2018) The role of MicroRNAs in patients with amyotrophic lateral sclerosis. J Mol Neurosci 66(4):617–628. https://doi.org/10.1007/s12031-018-1204-1

    Article  CAS  PubMed  Google Scholar 

  12. Martineau E, Di Polo A, Vande Velde C, Robitaille R (2018) Dynamic neuromuscular remodeling precedes motor-unit loss in a mouse model of ALS. eLife 7. https://doi.org/10.7554/eLife.41973

  13. Cozzolino M, Pesaresi MG, Gerbino V, Grosskreutz J, Carri MT (2012) Amyotrophic lateral sclerosis: new insights into underlying molecular mechanisms and opportunities for therapeutic intervention. Antioxid Redox Signal 17(9):1277–1330. https://doi.org/10.1089/ars.2011.4328

    Article  CAS  PubMed  Google Scholar 

  14. Brown RH, Al-Chalabi A (2017) Amyotrophic lateral sclerosis. N Engl J Med 377(2):162–172. https://doi.org/10.1056/NEJMra1603471

    Article  CAS  PubMed  Google Scholar 

  15. Quattrone A, Morelli M, Nistico R, Manna I, Quattrone A (2020) Dropped head syndrome in a patient with FTD-ALS caused by abnormal expansion of C9orf72 gene. Neurol Sci Off J Italian Neurol Soc Italian Soc Clin Neurophysiol 41(4):951–952. https://doi.org/10.1007/s10072-019-04079-9

    Article  Google Scholar 

  16. Corrado L, Brunetti M, Di Pierro A, Barberis M, Croce R, Bersano E, De Marchi F, Zuccala M, Barizzone N, Calvo A, Moglia C, Mazzini L, Chio A, D'Alfonso S (2019) Analysis of the GCG repeat length in NIPA1 gene in C9orf72-mediated ALS in a large Italian ALS cohort. Neurol Sci Off J Italian Neurol Soc Italian Soc Clin Neurophysiol 40(12):2537–2540. https://doi.org/10.1007/s10072-019-04001-3

    Article  Google Scholar 

  17. Deng HX, Hentati A, Tainer JA, Iqbal Z, Cayabyab A, Hung WY, Getzoff ED, Hu P, Herzfeldt B, Roos RP, (1993) Amyotrophic lateral sclerosis and structural defects in Cu,Zn superoxide dismutase. Science (New York, NY) 261(5124):1047–1051. https://doi.org/10.1126/science.8351519

  18. Rosen DR, Siddique T, Patterson D, Figlewicz DA, Sapp P, Hentati A, Donaldson D, Goto J, O'Regan JP, Deng HX, Rahmani Z, Krizus A, McKenna-Yasek D, Cayabyab A, Gaston SM, Berger R, Tanzi RE, Halperin JJ, Herzfeldt B, van den Bergh R, Hung WY, Bird T, Deng G, Mulder DW, Smyth C, Laing NG, Soriano E, Pericak–Vance MA, Haines J, Rouleau GA, Gusella JS, Horvitz HR, Brown RH Jr (1993) Mutations in Cu/Zn superoxide dismutase gene are associated with familial amyotrophic lateral sclerosis. Nature 362(6415):59–62. https://doi.org/10.1038/362059a0

    Article  CAS  PubMed  Google Scholar 

  19. Kabashi E, Valdmanis PN, Dion P, Spiegelman D, McConkey BJ, Vande Velde C, Bouchard JP, Lacomblez L, Pochigaeva K, Salachas F, Pradat PF, Camu W, Meininger V, Dupre N, Rouleau GA (2008) TARDBP mutations in individuals with sporadic and familial amyotrophic lateral sclerosis. Nat Genet 40(5):572–574. https://doi.org/10.1038/ng.132

    Article  CAS  PubMed  Google Scholar 

  20. Kwiatkowski TJ Jr, Bosco DA, Leclerc AL, Tamrazian E, Vanderburg CR, Russ C, Davis A, Gilchrist J, Kasarskis EJ, Munsat T, Valdmanis P, Rouleau GA, Hosler BA, Cortelli P, de Jong PJ, Yoshinaga Y, Haines JL, Pericak-Vance MA, Yan J, Ticozzi N, Siddique T, McKenna-Yasek D, Sapp PC, Horvitz HR, Landers JE, Brown RH Jr (2009) Mutations in the FUS/TLS gene on chromosome 16 cause familial amyotrophic lateral sclerosis. Science (New York, NY) 323(5918):1205–1208. https://doi.org/10.1126/science.1166066

    Article  CAS  Google Scholar 

  21. Taylor JP, Brown RH Jr, Cleveland DW (2016) Decoding ALS: from genes to mechanism. Nature 539(7628):197–206. https://doi.org/10.1038/nature20413

    Article  PubMed  PubMed Central  Google Scholar 

  22. Dardiotis E, Karampinis E, Siokas V, Aloizou AM, Rikos D, Ralli S, Papadimitriou D, Bogdanos DP, Hadjigeorgiou GM (2019) ERCC6L2 rs591486 polymorphism and risk for amyotrophic lateral sclerosis in Greek population. Neurol Sci Off J Italian Neurol Soc Italian Soc Clin Neurophysiol 40(6):1237–1244. https://doi.org/10.1007/s10072-019-03825-3

    Article  Google Scholar 

  23. Ning P, Yang X, Yang B, Zhao Q, Huang H, An R, Chen Y, Hu F, Xu Z, Xu Y (2018) Meta-analysis of the association between ZNF512B polymorphism rs2275294 and risk of amyotrophic lateral sclerosis. Neurol Sci Off J Italian Neurol Soc Italian Soc Clin Neurophysiol 39(7):1261–1266. https://doi.org/10.1007/s10072-018-3411-5

    Article  Google Scholar 

  24. Verde F, Tiloca C, Morelli C, Doretti A, Poletti B, Maderna L, Messina S, Gentilini D, Fogh I, Ratti A, Silani V, Ticozzi N (2019) PON1 is a disease modifier gene in amyotrophic lateral sclerosis: association of the Q192R polymorphism with bulbar onset and reduced survival. Neurol Sci Off J Italian Neurol Soc Italian Soc Clin Neurophysiol 40(7):1469–1473. https://doi.org/10.1007/s10072-019-03834-2

    Article  Google Scholar 

  25. Yang B, Jiang H, Wang F, Li S, Wu C, Bao J, Zhu Y, Xu Z, Liu B, Ren H, Yang X (2019) UNC13A variant rs12608932 is associated with increased risk of amyotrophic lateral sclerosis and reduced patient survival: a meta-analysis. Neurol Sci Off J Italian Neurol Soc Italian Soc Clin Neurophysiol 40(11):2293–2302. https://doi.org/10.1007/s10072-019-03951-y

    Article  Google Scholar 

  26. Kaus A, Sareen D (2015) ALS patient stem cells for unveiling disease signatures of motoneuron susceptibility: perspectives on the deadly mitochondria, ER stress and calcium triad. Front Cell Neurosci 9:448. https://doi.org/10.3389/fncel.2015.00448

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Contestabile A (2001) Oxidative stress in neurodegeneration: mechanisms and therapeutic perspectives. Curr Top Med Chem 1(6):553–568. https://doi.org/10.2174/1568026013394723

    Article  CAS  PubMed  Google Scholar 

  28. Bond L, Bernhardt K, Madria P, Sorrentino K, Scelsi H, Mitchell CS (2018) A metadata analysis of oxidative stress etiology in preclinical amyotrophic lateral sclerosis: benefits of antioxidant therapy. Front Neurosci 12:10. https://doi.org/10.3389/fnins.2018.00010

    Article  PubMed  PubMed Central  Google Scholar 

  29. Herrero MT, Morelli M (2017) Multiple mechanisms of neurodegeneration and progression. Prog Neurobiol 155:1. https://doi.org/10.1016/j.pneurobio.2017.06.001

    Article  PubMed  Google Scholar 

  30. Stamati P, Siokas V, Aloizou AM, Karampinis E, Arseniou S, Rakitskii VN, Tsatsakis A, Spandidos DA, Gozes I, Mitsias PD, Bogdanos DP, Hadjigeorgiou GM, Dardiotis E (2019) Does SCFD1 rs10139154 polymorphism decrease Alzheimer’s disease risk? J Mol Neurosci 69(2):343–350. https://doi.org/10.1007/s12031-019-01363-3

    Article  CAS  PubMed  Google Scholar 

  31. Vinceti M, Filippini T, Violi F, Rothman KJ, Costanzini S, Malagoli C, Wise LA, Odone A, Signorelli C, Iacuzio L, Arcolin E, Mandrioli J, Fini N, Patti F, Lo Fermo S, Pietrini V, Teggi S, Ghermandi G, Scillieri R, Ledda C, Mauceri C, Sciacca S, Fiore M, Ferrante M (2017) Pesticide exposure assessed through agricultural crop proximity and risk of amyotrophic lateral sclerosis. Environ Health Glob Access Sci Source 16(1):91. https://doi.org/10.1186/s12940-017-0297-2

    Article  Google Scholar 

  32. Meng E, Mao Y, Yao Q, Han X, Li X, Zhang K, Jin W (2020) Population-based study of environmental/occupational lead exposure and amyotrophic lateral sclerosis: a systematic review and meta-analysis. Neurol Sci Off J Italian Neurol Soc Italian Soc Clin Neurophysiol 41(1):35–40. https://doi.org/10.1007/s10072-019-04067-z

    Article  CAS  Google Scholar 

  33. Ghosh C, Hossain M, Solanki J, Dadas A, Marchi N, Janigro D (2016) Pathophysiological implications of neurovascular P450 in brain disorders. Drug Discov Today 21(10):1609–1619. https://doi.org/10.1016/j.drudis.2016.06.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Dutheil F, Beaune P, Loriot MA (2008) Xenobiotic metabolizing enzymes in the central nervous system: contribution of cytochrome P450 enzymes in normal and pathological human brain. Biochimie 90(3):426–436. https://doi.org/10.1016/j.biochi.2007.10.007

    Article  CAS  PubMed  Google Scholar 

  35. Campbell G, Frost DO (1987) Target-controlled differentiation of axon terminals and synaptic organization. Proc Natl Acad Sci U S A 84(19):6929–6933. https://doi.org/10.1073/pnas.84.19.6929

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Eaton DL, Gallagher EP, Bammler TK, Kunze KL (1995) Role of cytochrome P4501A2 in chemical carcinogenesis: implications for human variability in expression and enzyme activity. Pharmacogenetics 5(5):259–274. https://doi.org/10.1097/00008571-199510000-00001

    Article  CAS  PubMed  Google Scholar 

  37. Rasmussen BB, Brix TH, Kyvik KO, Brosen K (2002) The interindividual differences in the 3-demthylation of caffeine alias CYP1A2 is determined by both genetic and environmental factors. Pharmacogenetics 12(6):473–478. https://doi.org/10.1097/00008571-200208000-00008

    Article  CAS  PubMed  Google Scholar 

  38. Chuang YH, Lill CM, Lee PC, Hansen J, Lassen CF, Bertram L, Greene N, Sinsheimer JS, Ritz B (2016) Gene–environment interaction in Parkinson’s disease: coffee, ADORA2A, and CYP1A2. Neuroepidemiology 47(3–4):192–200. https://doi.org/10.1159/000450855

    Article  PubMed  PubMed Central  Google Scholar 

  39. Song L, Du Q, Jiang X, Wang L (2014) Effect of CYP1A2 polymorphism on the pharmacokinetics of agomelatine in Chinese healthy male volunteers. J Clin Pharm Ther 39(2):204–209. https://doi.org/10.1111/jcpt.12118

    Article  CAS  PubMed  Google Scholar 

  40. Wang H, Zhang Z, Han S, Lu Y, Feng F, Yuan J (2012) CYP1A2 rs762551 polymorphism contributes to cancer susceptibility: a meta-analysis from 19 case–control studies. BMC Cancer 12:528. https://doi.org/10.1186/1471-2407-12-528

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Koonrungsesomboon N, Khatsri R, Wongchompoo P, Teekachunhatean S (2018) The impact of genetic polymorphisms on CYP1A2 activity in humans: a systematic review and meta-analysis. Pharmacogenomics J 18(6):760–768. https://doi.org/10.1038/s41397-017-0011-3

    Article  CAS  PubMed  Google Scholar 

  42. Ludolph A, Drory V, Hardiman O, Nakano I, Ravits J, Robberecht W, Shefner J (2015) A revision of the El Escorial criteria—2015. Amyotroph Lateral Scler Frontotemporal Degener 16(5–6):291–292. https://doi.org/10.3109/21678421.2015.1049183

    Article  PubMed  Google Scholar 

  43. Siokas V, Kardaras D, Aloizou AM, Asproudis I, Boboridis KG, Papageorgiou E, Hadjigeorgiou GM, Tsironi EE, Dardiotis E (2019) BDNF rs6265 (Val66Met) polymorphism as a risk factor for blepharospasm. NeuroMolecular Med 21(1):68–74. https://doi.org/10.1007/s12017-018-8519-5

    Article  CAS  PubMed  Google Scholar 

  44. Siokas V, Kardaras D, Aloizou AM, Asproudis I, Boboridis KG, Papageorgiou E, Spandidos DA, Tsatsakis A, Tsironi EE, Dardiotis E (2019) Lack of association of the rs11655081 ARSG gene with blepharospasm. J Mol Neurosci 67(3):472–476. https://doi.org/10.1007/s12031-018-1255-3

    Article  CAS  PubMed  Google Scholar 

  45. Dardiotis E, Siokas V, Zafeiridis T, Paterakis K, Tsivgoulis G, Dardioti M, Grigoriadis S, Simeonidou C, Deretzi G, Zintzaras E, Jagiella J, Hadjigeorgiou GM (2017) Integrins AV and B8 gene polymorphisms and risk for intracerebral hemorrhage in Greek and polish populations. NeuroMolecular Med 19(1):69–80. https://doi.org/10.1007/s12017-016-8429-3

    Article  CAS  PubMed  Google Scholar 

  46. Skol AD, Scott LJ, Abecasis GR, Boehnke M (2006) Joint analysis is more efficient than replication-based analysis for two-stage genome-wide association studies. Nat Genet 38(2):209–213. https://doi.org/10.1038/ng1706

    Article  CAS  PubMed  Google Scholar 

  47. Sole X, Guino E, Valls J, Iniesta R, Moreno V (2006) SNPStats: a web tool for the analysis of association studies. Bioinformatics (Oxford, England) 22(15):1928–1929. https://doi.org/10.1093/bioinformatics/btl268

    Article  CAS  Google Scholar 

  48. Siokas V, Aslanidou P, Aloizou AM, Peristeri E, Stamati P, Liampas I, Arseniou S, Drakoulis N, Aschner M, Tsatsakis A, Mitsias PD, Bogdanos DP, Hadjigeorgiou GM, Dardiotis E (2020) Does the CD33 rs3865444 polymorphism confer susceptibility to Alzheimer’s disease? J Mol Neurosci 70:851–860. https://doi.org/10.1007/s12031-020-01507-w

    Article  CAS  PubMed  Google Scholar 

  49. Gunes A, Ozbey G, Vural EH, Uluoglu C, Scordo MG, Zengil H, Dahl ML (2009) Influence of genetic polymorphisms, smoking, gender and age on CYP1A2 activity in a Turkish population. Pharmacogenomics 10(5):769–778. https://doi.org/10.2217/pgs.09.22

    Article  CAS  PubMed  Google Scholar 

  50. Popat RA, Van Den Eeden SK, Tanner CM, Kamel F, Umbach DM, Marder K, Mayeux R, Ritz B, Ross GW, Petrovitch H, Topol B, McGuire V, Costello S, Manthripragada AD, Southwick A, Myers RM, Nelson LM (2011) Coffee, ADORA2A, and CYP1A2: the caffeine connection in Parkinson’s disease. Eur J Neurol 18(5):756–765. https://doi.org/10.1111/j.1468-1331.2011.03353.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Sachse C, Brockmoller J, Bauer S, Roots I (1999) Functional significance of a C-->a polymorphism in intron 1 of the cytochrome P450 CYP1A2 gene tested with caffeine. Br J Clin Pharmacol 47(4):445–449. https://doi.org/10.1046/j.1365-2125.1999.00898.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Palacios N, Weisskopf M, Simon K, Gao X, Schwarzschild M, Ascherio A (2010) Polymorphisms of caffeine metabolism and estrogen receptor genes and risk of Parkinson’s disease in men and women. Parkinsonism Relat Disord 16(6):370–375. https://doi.org/10.1016/j.parkreldis.2010.02.012

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Siokas V, Kardaras D, Aloizou A-M, Liampas I, Papageorgiou E, Drakoulis N, Tsatsakis A, Mitsias PD, Hadjigeorgiou GM, Tsironi EE, Dardiotis E (2020) CYP1A2 rs762551 and ADORA2A rs5760423 polymorphisms in patients with blepharospasm. J Mol Neurosci. https://doi.org/10.1007/s12031-020-01553-4

  54. Miksys SL, Tyndale RF (2002) Drug-metabolizing cytochrome P450s in the brain. J Psychiatry Neurosci 27(6):406–415

    PubMed  PubMed Central  Google Scholar 

  55. Morse DC, Stein AP, Thomas PE, Lowndes HE (1998) Distribution and induction of cytochrome P450 1A1 and 1A2 in rat brain. Toxicol Appl Pharmacol 152(1):232–239. https://doi.org/10.1006/taap.1998.8477

    Article  CAS  PubMed  Google Scholar 

  56. Ghersi-Egea JF, Perrin R, Leininger-Muller B, Grassiot MC, Jeandel C, Floquet J, Cuny G, Siest G, Minn A (1993) Subcellular localization of cytochrome P450, and activities of several enzymes responsible for drug metabolism in the human brain. Biochem Pharmacol 45(3):647–658. https://doi.org/10.1016/0006-2952(93)90139-n

    Article  CAS  PubMed  Google Scholar 

  57. Mentis A-FA, Pantelidi K, Dardiotis E, Hadjigeorgiou GM, Petinaki E (2018) Precision medicine and global health: the good, the bad, and the ugly. Front Med 5:67

    Article  Google Scholar 

  58. Mentis A (2016) Epigenomic engineering for down syndrome. Neurosci Biobehav Rev 71:323–327

    Article  CAS  Google Scholar 

  59. Belbasis L, Bellou V, Evangelou E (2016) Environmental risk factors and amyotrophic lateral sclerosis: an umbrella review and critical assessment of current evidence from systematic reviews and meta-analyses of observational studies. Neuroepidemiology 46(2):96–105

    Article  Google Scholar 

  60. Aloizou AM, Siokas V, Vogiatzi C, Peristeri E, Docea AO, Petrakis D, Provatas A, Folia V, Chalkia C, Vinceti M, Wilks M, Izotov BN, Tsatsakis A, Bogdanos DP, Dardiotis E (2020) Pesticides, cognitive functions and dementia: a review. Toxicol Lett 326:31–51. https://doi.org/10.1016/j.toxlet.2020.03.005

    Article  CAS  PubMed  Google Scholar 

  61. Dardiotis E, Siokas V, Sokratous M, Tsouris Z, Aloizou AM, Florou D, Dastamani M, Mentis AA, Brotis AG (2018) Body mass index and survival from amyotrophic lateral sclerosis: a meta-analysis. Neurol Clin Pract 8(5):437–444. https://doi.org/10.1212/cpj.0000000000000521

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Efthimios Dardiotis.

Ethics declarations

The authors declare that they have no conflict of interest.

Funding

The study was supported in part by a research grant of the Research Committee of the University of Thessaly, Greece (Code 5287).

Ethical approval

All procedures performed in studies involving human participants were in accordance with the ethical standards of the institutional and/or national research committee and with the 1964 Helsinki declaration and its later amendments or comparable ethical standards. Informed consent was obtained from all individual participants included in the study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Siokas, V., Karampinis, E., Aloizou, AM. et al. CYP1A2 rs762551 polymorphism and risk for amyotrophic lateral sclerosis. Neurol Sci 42, 175–182 (2021). https://doi.org/10.1007/s10072-020-04535-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10072-020-04535-x

Keywords

Navigation