Skip to main content

Advertisement

Log in

A new Tapered-L shaped springs based MEMS piezoelectric vibration energy harvester designed for small rolling bearing fault detection

  • Technical Paper
  • Published:
Microsystem Technologies Aims and scope Submit manuscript

Abstract

This paper examines the simulation-based performances of piezoelectric MEMS vibration energy harvester made up of two Tapered-L shaped springs and one seismic mass, which is designed for supplying energy to the bearing fault observing device or else identifying the defect in small bearing. The proposed novel structure having PZT-5A piezoelectric material is designed and analyzed in finite element method simulator COMSOL by utilizing vibration data-based comparison results of healthy and defective bearing from an experimental setup. Time domain analysis, fast Fourier transform, and Morlet wavelet transform are done on acquired vibration signatures to investigate the bearing condition. Experimental results demonstrate 0.09 g and 0.25 g peak acceleration for defect free and defective bearing, respectively. And bearing generated frequency when the ball passes the outer race of the ball bearing is obtained to be 76.3 Hz. Maximum observed power outputs from the Tapered-L shaped device are 22.96 nW and 177.49 nW at 0.09 g and 0.25 g accelerations, respectively over 76.3 Hz resonant frequency and 100 kΩ load resistance.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18

Similar content being viewed by others

References

  • Barakat M, Badaoui ME, Guillet F (2013) Hard competitive growing neural network for the diagnosis of small bearing faults. Mech Syst Signal Process 37(1–2):276–292

    Article  Google Scholar 

  • Beeby SP, Tudor MJ, White NM (2006) Energy harvesting vibration sources for microsystems applications. Meas Sci Technol 17(12):R175. https://doi.org/10.1088/0957-0233/17/12/R01

    Article  Google Scholar 

  • Blodt M, Granjon P, Raison B, Rostaing G (2008) Models for bearing damage detection in induction motors using stator current monitoring. IEEE Trans Ind Electron 55(4):1813–1822

    Article  Google Scholar 

  • Caliò R, Rongala U, Camboni D, Milazzo M, Stefanini C, Petris GD, Oddo C (2014) Piezoelectric energy harvesting solutions. Sensors 14(3):4755–4790

    Article  Google Scholar 

  • Choi WJ, Jeon Y, Jeong J-H, Sood R, Kim SG (2006) Energy harvesting MEMS device based on thin film piezoelectric cantilevers. J Electroceram 17(2–4):543–548

    Article  Google Scholar 

  • Ding C, Zhao M, Lin J, Jiao J (2019) Multi-objective iterative optimization algorithm based optimal wavelet filter selection for multi-fault diagnosis of rolling element bearings. ISA Trans 88:199–215

    Article  Google Scholar 

  • Domínguez-Pumar M, Pons-Nin J, Chávez-Domínguez JA (2016) MEMS technologies for energy harvesting. Nonlinearity Energy Harvest Syst. https://doi.org/10.1007/978-3-319-20355-3_2

    Article  Google Scholar 

  • Dow ABA, Bittner A, Schmid U, Kherani NP (2014) Design, fabrication and testing of a piezoelectric energy microgenerator. Microsyst Technol 20(4–5):1035–1040

    Google Scholar 

  • Durou H, Ardila-Rodriguez GA, Ramond A, Dollat X, Rossi C, Esteve D (2010) Micromachined bulk PZT piezoelectric vibration harvester to improve effectiveness over low amplitude and low frequency vibrations. In: Proceeding power MEMS, pp 19–22

  • Elfrink R, Renaud M, Kamel TM, Nooijer CD, Jambunathan M, Goedbloed M, Hohlfeld D, Matova S, Pop V, Caballero L, Schaijk RV (2010) Vacuum-packaged piezoelectric vibration energy harvesters: damping contributions and autonomy for a wireless sensor system. J Micromech Microeng 20(10):104001

    Article  Google Scholar 

  • Erturk A, Renno JM, Inman DJ (2008) Modeling of piezoelectric energy harvesting from an L-shaped beam-mass structure with an application to UAVs. J Intell Mater Syst Struct 20(5):529–544

    Article  Google Scholar 

  • Fang H-B, Liu J-Q, Xu Z-Y, Dong L, Wang L, Chen D, Cai B-C, Liu Y (2006) Fabrication and performance of MEMS-based piezoelectric power generator for vibration energy harvesting. Microelectron J 37(11):1280–1284

    Article  Google Scholar 

  • Hajati A, Kim S-G (2011) Ultra-wide bandwidth piezoelectric energy harvesting. Appl Phys Lett 99(8):083105

    Article  Google Scholar 

  • Hirasawa TH, Yen YT-T, Wright PK, Pisano AP, Lin L (2010) Design and fabrication of piezoelectric aluminum nitride corrugated beam energy harvester. In: Proceedings of power MEMS, pp 211–214

  • Hosseini R, Hamedi M (2015) Improvements in energy harvesting capabilities by using different shapes of piezoelectric bimorphs. J Micromech Microeng 25(12):125008

    Article  Google Scholar 

  • Isarakorn D, Briand D, Janphuang P, Sambri A, Gariglio S, Triscone J-M, Guy F, Reiner JW, Ahn CH, Rooij NFD (2011) The realization and performance of vibration energy harvesting MEMS devices based on an epitaxial piezoelectric thin film. Smart Mater Struct 20(2):025015

    Article  Google Scholar 

  • Kharche PP, Kshirsagar SV (2014) Review of fault detection in rolling element bearing. Int J Innov Res Adv Eng 1(5):169–174

    Google Scholar 

  • Kim S-G, Priya S, Kanno I (2012) Piezoelectric MEMS for energy harvesting. MRS Bull 37(11):1039–1050

    Article  Google Scholar 

  • Kim I-H, Jang S-J, Jung H-J (2017) Design and experimental study of an L shape piezoelectric energy harvester. Shock Vib 2017:1–8

    Google Scholar 

  • Kulkarni PG, Sahasrabudhe AD (2013) Application of wavelet transform for fault diagnosisof rolling element bearings. Int J Sci Technol Res 2(4):138–148

    Google Scholar 

  • Lei A, Xu R, Thyssen A, Stoot A, Christiansen TL, Hansen K, Lou-Moller R, Thomsen E, Birkelund K (2011) MEMS-based thick film PZT vibrational energy harvester. In: 2011 IEEE 24th international conference on micro electro mechanical systems

  • Li J, Zhang J, Li M, Zhang Y (2019) A novel adaptive stochastic resonance method based on coupled bistable systems and its application in rolling bearing fault diagnosis. Mech Syst Signal Process 114:128–145

    Article  Google Scholar 

  • Liu H, Lee C, Kobayashi T, Tay CJ, Quan C (2012) A new S-shaped MEMS PZT cantilever for energy harvesting from low frequency vibrations below 30 Hz. Microsyst Technol 18(4):497–506

    Article  Google Scholar 

  • Marzencki M, Basrour S, Charlot B, Grasso A, Colin M, Valbin L (2005) Design and fabrication of piezoelectric micro power generators for autonomous microsystems. In: Proceedings of symposium on design, test, integration and packaging of MEMS/MOEMS DTIP05 (Montreux, Switzerland), pp 299–302

  • Minh LV, Hara M, Horikiri F, Shibata K, Mishima T, Kuwano H (2013) Bulk micromachined energy harvesters employing (K, Na)NbO3 thin film. J Micromech Microeng 23(3):035029

    Article  Google Scholar 

  • Morimoto K, Kanno I, Wasa K, Kotera H (2010) High-efficiency piezoelectric energy harvesters of c-axis-oriented epitaxial PZT films transferred onto stainless steel cantilevers. Sens Actuators, A 163(1):428–432

    Article  Google Scholar 

  • Penella MT, Albesa J, Gasulla M (2009) Powering wireless sensor nodes: primary batteries versus energy harvesting. In: 2009 IEEE intrumentation and measurement technology conference

  • Singh S, Kumar A, Kumar N (2014) Motor current signature analysis for bearing fault detection in mechanical systems. Procedia Mater Sci 6:171–177

    Article  Google Scholar 

  • Song H-C, Kumar P, Maurya D, Kang M-G, Reynolds WT, Jeong D-Y, Kang C-Y, Priya S (2017) Ultra-low resonant piezoelectric MEMS ENERGY HARVESTER WITH HIGH POWER DENSITY. J Microelectromech Syst 26(6):1226–1234

    Article  Google Scholar 

  • Song L, Wang H, Chen P (2018) Vibration-based intelligent fault diagnosis for roller bearings in low-speed rotating machinery. IEEE Trans Instrum Meas 67(8):1887–1899

    Article  Google Scholar 

  • Tao K, Yi H, Tang L, Wu J, Wang P, Wang N, Hu L, Fu Y, Miao J, Chang H (2019) Piezoelectric ZnO thin films for 2DOF MEMS vibrational energy harvesting. Surf Coat Technol 359:289–295

    Article  Google Scholar 

  • Wang P, Du H (2015) ZnO thin film piezoelectric MEMS vibration energy harvesters with two piezoelectric elements for higher output performance. Rev Sci Instrum 86(7):075002

    Article  Google Scholar 

  • Won SS, Lee J, Venugopal V, Kim D-J, Lee J, Kim IW, Kingon AI, Kim S-H (2016) Lead-free Mn-doped (K0.5,Na0.5)NbO3 piezoelectric thin films for MEMS-based vibrational energy harvester applications. Appl Phys Lett 108(23):232908

    Article  Google Scholar 

  • Xu R, Lei A, Dahl-Petersen C, Hansen K, Guizzetti M, Birkelund K, Thomsen EV, Hansen O (2012) Fabrication and characterization of MEMS-based PZT/PZT bimorph thick film vibration energy harvesters. J Micromech Microeng 22(9):094007

    Article  Google Scholar 

  • Zhang H, Chen X, Du Z, Yan R (2016) Kurtosis based weighted sparse model with convex optimization technique for bearing fault diagnosis. Mech Syst Signal Process 80:349–376

    Article  Google Scholar 

  • Zhang X, Liu Z, Wang J, Wang J (2019) Time–frequency analysis for bearing fault diagnosis using multiple Q-factor Gabor wavelets. ISA Trans 87:225–234

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Bapi Debnath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Debnath, B., Kumar, R. A new Tapered-L shaped springs based MEMS piezoelectric vibration energy harvester designed for small rolling bearing fault detection. Microsyst Technol 26, 2407–2422 (2020). https://doi.org/10.1007/s00542-020-04783-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00542-020-04783-z

Navigation