Skip to main content
Log in

Improved the quality factor and sensitivity of a surface plasmon resonance sensor with transition metal dichalcogenide 2D nanomaterials

  • Research paper
  • Published:
Journal of Nanoparticle Research Aims and scope Submit manuscript

Abstract

In this paper, design and modeling of a surface plasmon resonance (SPR) sensors using transition metal dichalcogenide (TMDC) 2D nanomaterials such as tungsten sulfide (WS2) and graphene with the improvements of the sensitivity and the figure of merit (FoM) are demonstrated. The proposed sensors are based on Kretschmann configuration for the obtaining of the reflectivity using the transfer matrix method (TMM) and Fresnel equations. A monolayer of nickel (Ni) was added between WS2 layers and graphene layers to enhance the sensitivity (S) and FoM of our proposed sensor. The reported sensor exhibits a good angular sensitivity which is improved to the maximum value of 243.31°/RIU. It is noted the SPR sensor sensitivity changes with the variation of the WS2 and graphene layer numbers. Full width half maximum (FWHM) values are minimized to be 7.15°; then, the FoM is reached to be 34.03 RIU−1 which gives better sensing properties in comparison with other published articles.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Aksimsek S, Sun Z (2016) Graphene-MoS2 heterostructure based surface plasmon resonance biosensor. 2016. URSI International Symposium on Electromagnetic Theory, EMTS 2016 2(3):180–181

    Google Scholar 

  • Aksimsek S, Jussila H, Sun Z (2018) Graphene–MoS2–metal hybrid structures for plasmonic biosensors. Opt Commun 428(July):233–239

    CAS  Google Scholar 

  • Aruna Gandhi MS, Chu S, Senthilnathan K, Babu PR, Nakkeeran K, Li Q (2019) Recent advances in plasmonic sensor-based fiber optic probes for biological applications. Appl Sci (Switzerland) 9(5) 949 (March): 1-22

  • Chen S, Lin C (2016) High-performance bimetallic film surface plasmon resonance sensor based on film thickness optimization. Optik 127(19):7514–7519

    CAS  Google Scholar 

  • Chen S, Lin C (2019) Sensitivity comparison of graphene based surface plasmon resonance biosensor with Au, Ag and Cu in the visible region. Mater Res Express 6(5) 056503 : 1-9

  • Chlebus R, Chylek J, Ciprian D, Hlubina P (2018) Surface plasmon resonance based measurement of the dielectric function of a thin metal film. Sensors (Basel, Switzerland) 18(11): 8-19

  • Dai X, Liang Y, Zhao Y, Gan S, Jia Y, Xiang Y (2019) Sensitivity enhancement of a surface plasmon resonance with tin selenide (SnSe) allotropes. Sensors (Switzerland) 19(1):1-8

  • Deng S, Wang P, Yu X (2017) Phase-sensitive surface plasmon resonance sensors: recent progress and future prospects. Sensors (Switzerland) 17(12):1-14

  • Fouad S, Sabri N, Jamal ZAZ, Poopalan P (2016) Enhanced sensitivity of surface plasmon resonance sensor based on bilayers of silver-barium titanate. J Nano- and Electr Phys 8(4):1–5

    Google Scholar 

  • Hasib MHH, Nur JN, Rizal C, Shushama KN (2019a) Improved transition metal dichalcogenides-based surface plasmon resonance biosensors. Condens Matter 4(2):49

    Google Scholar 

  • Homola GG (1999) Surface plasmon resonance sensors: review. Sensors Actuators B Chem 54(1):3–15

    CAS  Google Scholar 

  • Homola J (2006) Surface plasmon resonance based sensors. In: Springer tracts in modern physics, vol 4. Springer-Verlag Berlin ed., Heidelberg

    Google Scholar 

  • Hossain MB, Rana MM, Abdulrazak LF, Mitra S, Rahman M (2019) Graphene-MoS2 with TiO2_SiO2 layers based surface plasmon resonance biosensor: numerical development for formalin detection. Biochem Biophys Rep 18:1–6

    Google Scholar 

  • Klantsataya E, François A, Ebendorff H, Hoffmann P, Monro TM (2015) Surface plasmon scattering in exposed core optical fiber for enhanced resolution refractive index sensing. Sensors (Switzerland) 15(10):25090–25102

    Google Scholar 

  • Koppens FHL, Chang DE, García De Abajo FJ (2011) Graphene plasmonics: a platform for strong light-matter interactions. Nano Lett 11(8):3370–3377

    CAS  Google Scholar 

  • Kretschmann E, Raether H (1968) Radiative decay of non radiative surface plasmons excited by light. J Phys Sci 23(12):2135–2136

    CAS  Google Scholar 

  • Li H, Yin Z, He Q, Li H, Huang X, Lu G, Zhang H (2012) Fabrication of single- and multilayer MoS2 film-based field-effect transistors for sensing NO at room temperature. Small 8(1):63–67

    CAS  Google Scholar 

  • Lin C, Chen S (2019) Design of high-performance au-Ag-dielectric-graphene based surface plasmon resonance biosensors using genetic algorithm. J Appl Phys 125(11):113101

    Google Scholar 

  • Lin Z, Jiang L, Wu L, Guo J, Dai X, Xiang Y, Fan D (2016) Tuning and sensitivity enhancement of surface plasmon resonance biosensor with graphene covered Au-MoS2-Au films. IEEE Photonics J 8(6):1–8

    Google Scholar 

  • Liu Y, Duan X, Huang Y, Duan X (2018) Two-dimensional transistors beyond graphene and TMDCs. Chem Soc Rev 47(16):6388–6409

    CAS  Google Scholar 

  • Loh TAJ, Chua DHC, Wee ATS (2015) One-step synthesis of few-layer WS2 by pulsed laser deposition. Sci Rep 5(November):1–9

    Google Scholar 

  • Hasib M, Nur MHH, Rizal JN, Shushama KN (2019b) Improved transition metal dichalcogenides-based surface plasmon resonance biosensors. Condens Matter 4(2):49

    Google Scholar 

  • Maharana PK, Jha R (2012) Chalcogenide prism and graphene multilayer based surface plasmon resonance affinity biosensor for high performance. Sensors Actuators B Chem 169(September):161–166

    CAS  Google Scholar 

  • Maurya JB, Prajapati YK (2016) A comparative study of different metal and prism in the surface plasmon resonance biosensor having MoS2-graphene. Opt Quant Electron 48(5):1–12

    CAS  Google Scholar 

  • Maurya JB, Prajapati YK, Singh V, Saini JP, Tripathi R (2015) Performance of graphene–MoS2 based surface plasmon resonance sensor using silicon layer. Opt Quant Electron 47(11):3599–3611

    CAS  Google Scholar 

  • Meng QQ, Zhao X, Lin CY, Chen SJ, Ding YC, Chen ZY (2017) Figure of merit enhancement of a surface plasmon resonance sensor using a low-refractive-index porous silica film. Sensors (Switzerland) 17(8):1–11

    Google Scholar 

  • Nisha A, Maheswari P, Anbarasan PM, Rajesh KB, Jaroszewicz Z (2019) Sensitivity enhancement of surface plasmon resonance sensor with 2D material covered noble and magnetic material (Ni). Opt Quant Electron 51(1):1-12

  • Novoselov KS, Geim AK, Morozov SV, Jiang D, Zhang Y, Dubonos SV, Firsov AA (2004) Electric field in atomically thin carbon films. Science 306(5696):666–669

    CAS  Google Scholar 

  • Nur JN, Hasib MHH, Asrafy F, Shushama KN, Inum R, Rana MM (2019) Improvement of the performance parameters of the surface plasmon resonance biosensor using Al2O3 and WS2. Opt Quant Electron 51(6):1–11

    CAS  Google Scholar 

  • Oliveira LC, Moreira CS, Neff H, Lima AMN (2016) Optical properties and instrumental performance of thin noble metal (Cu, Au, Ag) films near the surface plasmon resonance. Procedia Eng 168:834–837

    CAS  Google Scholar 

  • Otto A (1968) Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection. Z F Phys A Hadrons Nuclei 216(4):398–410

    CAS  Google Scholar 

  • Pal S, Verma A, Prajapati YK, Saini JP (2017) Influence of black phosphorous on performance of surface plasmon resonance biosensor. Opt Quant Electron 49(12):1–13

    CAS  Google Scholar 

  • Pandey AK, Sharma AK (2018) Simulation and analysis of plasmonic sensor in NIR with fluoride glass and graphene layer. Photonics Nanostruct Fundam Appl 28:94–99

    Google Scholar 

  • Prabowo BA, Purwidyantri A, Liu KC (2018) Surface plasmon resonance optical sensor: a review on light source technology. Biosensors 8(3) :1-27

  • Rahman MS, Anower MS, Abdulrazak LF (2019a) Utilization of a phosphorene graphene/TMDC heterostructure in a surface plasmon resonance-based fiber optic biosensor. Photonics Nanostruct Fundam Appl 35:100711

    Google Scholar 

  • Rahman MS, Hasan MR, Rikta KA, Anower MS (2018) A novel graphene coated surface plasmon resonance biosensor with tungsten disulfide (WS2) for sensing DNA hybridization. Opt Mater 75:567–573

    CAS  Google Scholar 

  • Rahman SM, Noor SS, Anower MS, Abdulrazak LF, Rahman MM, Rikta KA (2019b) Design and numerical analysis of a graphene-coated fiber-optic SPR biosensor using tungsten disulfide. Photonics Nanostruct Fundam Appl 33:29–35

    Google Scholar 

  • Saifur Rahman M, Anower MS, Bashar LB, Rikta KA (2017) Sensitivity analysis of graphene coated surface plasmon resonance biosensors for biosensing applications. Sens Bio-Sens Res 16:41–45

    Google Scholar 

  • Sarid D, Challener WA (2010) Modern introduction to surface plasmons: theory, mathematica modeling, and applications. Cambridge University Press, Cambridge

    Google Scholar 

  • Serway RA, Jewett JW (2014) Physics for scientists and engineers with modern physics, 9th edn. Cengage Learning, Boston

    Google Scholar 

  • Shah K, Sharma NK (2018) SPR based fiber optic sensor utilizing thin film of nickel. AIP Conference Proceedings, 1–4

  • Shi B, Zhou D, Fang S, Djebbi K, Feng S, Zhao H, Wang D (2019) Facile and controllable synthesis of large-area monolayer WS2 flakes based on WO3 precursor drop-casted substrates by chemical vapor deposition. Nanomaterials 9(4):1–12

    Google Scholar 

  • Shukla S, Sharma NK, Sajal V (2016) Theoretical study of surface plasmon resonance-based fiber optic sensor utilizing cobalt and nickel films. Braz J Phys 46(3):288–293

    CAS  Google Scholar 

  • Shushama KN, Rana MM, Inum R, Hossain MB (2017) Sensitivity enhancement of graphene coated surface plasmon resonance biosensor. Opt Quant Electron 49(11):1-13

  • Sun P, Wang M, Liu L, Jiao L, Du W, Xia F, Yun M (2019) Sensitivity enhancement of surface plasmon resonance biosensor based on graphene and barium titanate layers. Appl Surf Sci 475:342–347

    CAS  Google Scholar 

  • Vahed H, Nadri C (2019) Ultra-sensitive surface plasmon resonance biosensor based on MoS2 –graphene hybrid nanostructure with silver metal layer. Opt Quant Electron 51(1):1–13

    CAS  Google Scholar 

  • Verma A, Prakash A, Tripathi R (2015) Performance analysis of graphene based surface plasmon resonance biosensors for detection of pseudomonas-like bacteria. Opt Quant Electron 47(5):1197–1205

    CAS  Google Scholar 

  • Verma R, Gupta BD, Jha R (2011) Sensitivity enhancement of a surface plasmon resonance based biomolecules sensor using graphene and silicon layers. Sensors Actuators B Chem 160(1):623–631

    CAS  Google Scholar 

  • Wang H, Zhang H, Dong J, Hu S, Zhu W, Qiu W, Luo Y (2018) Sensitivity-enhanced surface plasmon resonance sensor utilizing a tungsten disulfide (WS2) nanosheets overlayer. Photonics Res 6(6):485

    CAS  Google Scholar 

  • Wang M, Huo Y, Jiang S, Zhang C, Yang C, Ning T, Man B (2017) Theoretical design of a surface plasmon resonance sensor with high sensitivity and high resolution based on graphene-WS2 hybrid nanostructures and Au-Ag bimetallic film. RSC Adv 7(75):47177–47182

    CAS  Google Scholar 

  • Wu L, Chu HS, Koh WS, Li EP (2010) Highly sensitive graphene biosensors based on surface plasmon resonance. Opt Express 18(14):14395–14400

    CAS  Google Scholar 

  • Xu Z, Lv Y, Huang F, Zhao C, Zhao S, Wei G (2019) ZnO-controlled growth of monolayer WS2 through chemical vapor deposition. Materials 12(12):1–8

    Google Scholar 

  • Zeng S, Hu S, Xia J, Anderson T, Dinh XQ, Meng XM, Yong KT (2015) Graphene-MoS2 hybrid nanostructures enhanced surface plasmon resonance biosensors. Sensors Actuators B Chem 207:801–810

    CAS  Google Scholar 

  • Zhao X, Huang T, Ping PS, Wu X, Huang P, Pan J, Cheng Z (2018) Sensitivity enhancement in surface plasmon resonance biochemical sensor based on transition metal dichalcogenides/graphene heterostructure. Sensors (Switzerland) 18(7) 2056:1-10

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohamed Alagdar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alagdar, M., Yousif, B., Areed, N.F. et al. Improved the quality factor and sensitivity of a surface plasmon resonance sensor with transition metal dichalcogenide 2D nanomaterials. J Nanopart Res 22, 189 (2020). https://doi.org/10.1007/s11051-020-04872-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11051-020-04872-0

Keywords

Navigation