Skip to main content

Advertisement

Log in

Substituted triazolo-triazine derivatives as energetic materials: a computational investigation and assessment

  • Original Paper
  • Published:
Journal of Molecular Modeling Aims and scope Submit manuscript

Abstract

A series of energetic compounds were derived from [1,2,4]triazolo[1,5-a][1,3,5]triazine and azo-bridged fused backbone by introducing the –NO2, –NHNO2, –ONO2, –N3, and –NH2 explosophoric groups. The influence of explosophoric groups on energetic properties has been explored. All the compounds exhibit positive energy content (34.4–1955.4 kJ/mol) and densities (1.71–1.99 g/cm3) subject to fused triazole and triazine framework and various functional groups. The designed compounds with –NHNO2, –ONO2, and –NO2 functional groups possess high detonation velocities (8.23–9.00 km/s), pressures (30.94–37.68 GPa), Gurney velocities (2.70–2.88 km/s), and power index (109–131%) superior to TNT (6.94 m/s, 22.0 GPa, 2.37 km/s, and 118%) and comparable with RDX (8.60 km/s, 33.92 GPa, 2.93 km/s, and 169%) and HMX (8.90 km/s, 38.39 GPa, 2.97 km/s, and 169%). Based on high nitrogen and energy content, performance parameters, and sensitivity data, the designed compounds show high potential to be used as energetic materials.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Gao H, Shreeve JM (2011) Azole-based energetic salts. Chem Rev 111:7377–7436

    Article  CAS  Google Scholar 

  2. Klapötke TM (2012) Chemistry of high-energy materials2nd edn. De Gruyter, Berlin

    Book  Google Scholar 

  3. Gao H, Zhang Q, Shreeve JM (2020) Fused heterocycle-based energetic materials (2012–2019). J Mater Chem A 8:4193–4216

    Article  CAS  Google Scholar 

  4. Ma J, Tang Y, Cheng G, Imler GH, Parrish DA, Shreeve JM (2020) Energetic derivatives of 8-nitropyrazolo[1,5-a][1,3,5]triazine-2,4,7-triamine: achieving balanced explosives by fusing pyrazole with triazine. Org Lett 22:1321–1325

    Article  CAS  Google Scholar 

  5. Chen S, Liu Y, Feng Y, Yang X, Zhang Q (2020) 5,6-Fused bicyclic tetrazolo-pyridazine energetic materials. Chem Commun 56:1493–1496

    Article  CAS  Google Scholar 

  6. Politzer P, Murray JS (2017) Computational analysis of polyazoles and their N-oxides. Struct Chem 28:1045–1063

    Article  CAS  Google Scholar 

  7. Berecz G, Pongó L, Kövesdi I, Reiter J (2002) On triazoles XLV [1] synthesis of 5,7-diamino-1,2,4-triazolo[1,5-a] [1,3,5]triazines. J Heterocyclic Chem 39:327–334

    Article  CAS  Google Scholar 

  8. Dolzhenko AV, Dolzhenko AV, Chui WK (2007) Synthesis of 5,7-diamino[1,2,4]triazolo[1,2-a][1,3,5]triazines via annulation of 1,3,5-triazine ring onto 3(5)-amino-1,2,4-triazoles. Heterocycles 71:429–436

    Article  CAS  Google Scholar 

  9. Ma J, Cheng G, Ju X, Yi Z, Zhu S, Zhang Z, Yang H (2018) Amino-nitramino functionalized triazolotriazines: a good balance between high energy and low sensitivity. Dalton Trans 47:14483–14490

    Article  CAS  Google Scholar 

  10. Hu L, Yin P, Zhao G, He C, Imler GH, Parrish DA, Gao H, Shreeve JM (2018) Conjugated energetic salts based on fused rings: insensitive and highly dense materials. J Am Chem Soc 140:15001–15007

    Article  CAS  Google Scholar 

  11. Tang Y, Yang H, Shen J, Wu B, Ju X, Lu C, Cheng G (2012) Synthesis and characterization of 1,1′-azobis(5-methyltetrazole). New J Chem 36:2447–2450

    Article  CAS  Google Scholar 

  12. Wang F, Du H, Zhang J, Gong X (2011) Comparative theoretical studies of energetic azo s-triazines. J Phys Chem A 115:11852–11860

    Article  CAS  Google Scholar 

  13. Liu H, Wang F, Wang GX, Gong XD (2012) Theoretical investigations on structure, density, detonation properties, and sensitivity of the derivatives of PYX. J Comput Chem 33:1790–1796

    Article  CAS  Google Scholar 

  14. Wei T, Zhu W, Zhang X, Li Y, Xiao H (2009) Molecular design of 1,2,4,5-tetrazine-based high-energy density materials. J Phys Chem A 113:9404–9412

    Article  CAS  Google Scholar 

  15. Frisch MJ, Trucks GW, Schlegel HB, Scuseria GE, Robb MA, Cheeseman JR, Scalmani G, Barone V, Mennucci B, Petersson GA, Nakatsuji H, Caricato M, Li X, Hratchian HP, Izmaylov AF, Bloino J, Zheng G, Sonnenberg JL, Hada M, Ehara M, Toyota K, Fukuda R, Hasegawa J, Ishida M, Nakajima T, Honda Y, Kitao O, Nakai H, Vreven T, Montgomery Jr JA, Peralta JE, Ogliaro F, Bearpark M, Heyd JJ, Brothers E, Kudin KN, Staroverov VN, Keith T, Kobayashi R, Normand J, Raghavachari K, Rendell A, Kurant JC, Iyengar SS, Tomasi J, Cossi M, Rega N, Millam JM, Klene M, Knox JE, Cross JB, Bakken V, Adamo C, Jaramillo J, Gomperts R, Stratmann RE, Yazyev O, Austin AJ, Cammi R, Pomelli C, Ochterski JW, Martin RL, Morokuma K, Zakrzewski VG, Voth GA, Salwador P, Dannenberg JJ, Dapprich S, Daniels AD, Farkas O, Foresman JB, Ortiz JV, Cioslowski J, Fox DJ (2013) Gaussian 09, Revision E.01. Gaussian Inc., Wallingford

    Google Scholar 

  16. Ghule VD (2012) Computational studies on energetic properties of trinitro-substituted imidazole−triazole and pyrazole−triazole derivatives. J Phys Chem A 116:9391–9397

    Article  CAS  Google Scholar 

  17. Ghule VD (2013) Studies on energetic properties for nitrotetrazole substituted triazole and oxadiazole derivatives with density functional theory. Mol Phys 111:95–100

    Article  CAS  Google Scholar 

  18. Nirwan A, Devi A, Ghule VD (2019) Theoretical determination of the effects of various linkages between trinitrobenzenes on energetic properties and sensitivity. J Mol Model 25:315

    Article  Google Scholar 

  19. Curtiss LA, Redfern PC, Raghavachari K (2007) Gaussian-4 theory. J Chem Phys 126:084108

    Article  Google Scholar 

  20. Rayne S, Forest K (2010) Estimated gas-phase standard state enthalpies of formation for organic compounds using the Gaussian-4 (G4) and W1BD theoretical methods. J Chem Eng Data 55:5359–5364

    Article  CAS  Google Scholar 

  21. Kamlet MJ, Jacobs SJ (1968) Chemistry of detonations. I. A simple method for calculating detonation properties of C−H−N−O explosives. J Chem Phys 48:23–36

    Article  CAS  Google Scholar 

  22. Akhavan J (2004) The chemistry of explosives2nd edn. RSC Paperbacks, Cambridge

    Google Scholar 

  23. Kamlet MJ, Finger M (1979) An alternative method for calculating gurney velocities. Combust Flame 34:213–214

    Article  CAS  Google Scholar 

  24. Hardesty DR, Kennedy JE (1977) Thermochemical estimation of explosive energy output. Combust Flame 28:45–59

    Article  CAS  Google Scholar 

  25. Politzer P, Murray JS (2014) Impact sensitivity and crystal lattice compressibility/free space. J Mol Model 20:2223

    Article  Google Scholar 

  26. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2011) Sensitivity and the available free space per molecule in the unit cell. J Mol Model 17:2569–2574

    Article  Google Scholar 

  27. Pospíšil M, Vávra P, Concha MC, Murray JS, Politzer P (2010) A possible crystal volume factor in the impact sensitivities of some energetic compounds. J Mol Model 16:895–901

    Article  Google Scholar 

  28. Politzer P, Murray JS (2016) High performance, low sensitivity: conflicting or compatible? Propellants Explos Pyrotech 41:414–425

    Article  CAS  Google Scholar 

  29. Politzer P, Murray JS (2015) Some molecular/crystalline factors that affect the sensitivities of energetic materials: molecular surface electrostatic potentials, lattice free space and maximum heat of detonation per unit volume. J Mol Model 21:25

    Article  Google Scholar 

  30. Morrill JA, Byrd EFC (2008) Development of quantitative structure–property relationships for predictive modeling and design of energetic materials. J Mol Graph Model 27:349–355

    Article  CAS  Google Scholar 

  31. Wang W, Zhu W, Li J, Cheng B, Xiao H (2013) Periodic density functional theory study of the high-pressure behavior of energetic crystalline 1,4-dinitrofurazano[3, 4-b]piperazine. J Mol Model 19:305–314

    Article  Google Scholar 

  32. Khan RU, Zhu S, Zhu W (2019) DFT studies on nitrogen-rich pyrazino [2, 3-e] [1, 2, 3, 4] tetrazine–based high–energy density compounds. J Mol Model 25:283

    Article  Google Scholar 

  33. Politzer P, Murray JS (2015) Impact sensitivity and the maximum heat of detonation. J Mol Model 21:262

    Article  Google Scholar 

Download references

Acknowledgements

Anjali thanks UGC-CSIR, Ministry of Human Resource Development, Government of India for Junior Research Fellowship. RSM thank Armament Research Board, Defence R&D Organization, DRDO for research fellowship (No. ARMREB/CDSW/2019/211).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vikas D. Ghule.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

Computational details, selective structural parameters, and energetic properties related parameters of triazolo-triazine derivatives are given in the Supporting Information. (DOCX 1475 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Maan, A., Mathpati, R.S. & Ghule, V.D. Substituted triazolo-triazine derivatives as energetic materials: a computational investigation and assessment. J Mol Model 26, 184 (2020). https://doi.org/10.1007/s00894-020-04455-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00894-020-04455-9

Keywords

Navigation