Skip to main content
Log in

Quantum Secret Sharing Based on Continuous-Variable GHZ States

  • Published:
International Journal of Theoretical Physics Aims and scope Submit manuscript

Abstract

Based on the continuous-variable GHZ states, an efficient (n, n) quantum secret sharing protocol is designed, where the Dealer can distribute the various shares to different participants at one time. Likewise, every participant can transfer the same message (share) to other participants simultaneously in the secret recovery process. In this way, the cost of time and quantum photons sharply decreases. What’s more, the proposed QSS is proved to be feasible in the terrible quantum channel with low transmission efficiency and be secure without any secret information leakage under the participant attack.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. Shamir, A.: How to share a secret. Commun. ACM 22(11), 612–613 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bužek, H.M., Berthiaume, A.: Quantum secret sharing. Phys. Rev. A 59(3), 1829 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  3. Karlsson, A., Koashi, M., Imoto, N.: Quantum entanglement for secret sharing and secret splitting. Phys. Rev. A 59(1), 162 (1999)

    Article  ADS  Google Scholar 

  4. Zhang, Z., Man, Z.: Multiparty quantum secret sharing of classical messages based on entanglement swapping. Phys. Rev. A 72(2), 022303 (2005)

    Article  ADS  MathSciNet  Google Scholar 

  5. Li, Y., Zhang, K., Peng, K.: Multiparty secret sharing of quantum information based on entanglement swapping. Phys. Lett. A 324(5-6), 420–424 (2004)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  6. Guo, Y., Zhao, Y.: High-efficient quantum secret sharing based on the Chinese remainder theorem via the orbital angular momentum entanglement analysis. Quantum Inf. Process 12(2), 1125–1139 (2013)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  7. Yang, Y.G., Teng, Y.W., Chai, H.P., et al.: Verifiable quantum (k, n)-threshold secret key sharing. Int. J. Theor. Phys. 50(3), 792–798 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cleve, R., Gottesman, D., Lo, H.K.: How to share a quantum secret. Phys. Rev. Lett. 83(3), 648 (1999)

    Article  ADS  Google Scholar 

  9. Guo, G.P., Guo, G.C.: Quantum secret sharing without entanglement. Phys. Lett. A 310(4), 247–251 (2003)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  10. Xiao, L., Long, G.L., Deng, F.G., et al.: Efficient multiparty quantum-secret-sharing schemes. Phys. Rev. A 69(5), 052307 (2004)

    Article  ADS  Google Scholar 

  11. Liu, F., Qin, S.J., Wen, Q.Y.: A quantum secret-sharing protocol with fairness. Physica Scripta 89(7), 075104 (2014)

    Article  ADS  Google Scholar 

  12. Yan, F.L., Gao, T.: Quantum secret sharing between multiparty and multiparty without entanglement. Phys. Rev. A 72(1), 012304 (2005)

    Article  ADS  Google Scholar 

  13. Deng, F.G., Zhou, H.Y., Long, G.L.: Circular quantum secret sharing. Journal of Physics A: Mathematical and General 39(45), 14089 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  14. Shi, R.H., Sun, Q., Guo, Y., LEE M, H.: Quantum secret sharing based on chienese remainder. Commun. Theor. Phys. 55(4), 573 (2011)

    Article  ADS  MathSciNet  Google Scholar 

  15. Qin, H., Tso, R.: Efficient quantum secret sharing based on special multi-dimensional GHZ state. Opt. Quant. Electron. 50(4), 167 (2018)

    Article  Google Scholar 

  16. Guo, Y., Liao, Q., Huang, D., Zeng, G.: Quantum relay schemes for continuous-variable quantum key distribution. Phys. Rev. A 95, 042326 (2017)

    Article  ADS  Google Scholar 

  17. Guo, Y., Xie, C., Huang, P., Li, J., Zhang, L., Huang, D., Zeng, G.: Channel-parameter estimation for satellite-to-submarine continuous-variable quantum key distribution. Phys. Rev. A 97(5), 052326 (2018)

    Article  ADS  Google Scholar 

  18. Guo, Y., Ye, W., Zhong, H., Liao, Q.: Continuous-variable quantum key distribution with non-Gaussian quantum catalysis. Phys. Rev. A 99(3), 032327 (2019)

    Article  ADS  Google Scholar 

  19. Vaidman, L.: Teleportation of quantum state. Phys. Rev. A 49(2), 1473 (1994)

    Article  ADS  MathSciNet  Google Scholar 

  20. Braunstein, S.L., Kimble, H.J.: Teleportation of continuous quantum variables. Phys. Rev. Lett. 80(4), 869 (1998)

    Article  ADS  Google Scholar 

  21. Lloyd, S., Braunstein, S.L.: Quantum Computation Over Continuous Variables//Quantum Information with Continuous Variables, pp 9–17. Springer, Dordrecht (1999)

    Book  MATH  Google Scholar 

  22. Albash, T., Lidar, D.A.: Adiabatic quantum computation. Rev. Mod. Phys. 90(1), 015002 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  23. Feng, Y., Shi, R., Zhou, J., Liao, Q., Guo, Y.: Quantum byzantine agreement with tripartite entangled states. Int. J. Theor. Phys., 1–17 (2019)

  24. Guo, Y., Feng, Y., Huang, D., Shi, J.: Arbitrated quantum signature scheme with continuous-variable coherent states. Int. J. Theor. Phys. 55 (4), 2290–2302 (2016)

    Article  MATH  Google Scholar 

  25. Feng, Y.Y., Shi, R., Guo, Y.: Arbitrated quantum signature scheme with continuous-variable squeezed vacuum states. Chinese Phys. B 27(2), 020302 (2018)

    Article  ADS  Google Scholar 

  26. Guo, Y., Feng, Y.Y., Zeng, G.: Quantum anonymous voting with unweighted continuous-variable graph states. Quantum Inf. Process 15(8), 3327–3345 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  27. Tyc, T., Sanders, B.C.: How to share a continuous-variable quantum secret by optical interferometry. Phys. Rev. A 65(4), 042310 (2002)

    Article  ADS  Google Scholar 

  28. Lance, A.M., Symul, T., Bowen, W.P., et al.: Continuous variable (2, 3) threshold quantum secret sharing schemes. New J. Phys. 5(1), 4 (2003)

    Article  ADS  MathSciNet  Google Scholar 

  29. Zhou, N., Song, H., Gong, L.: Continuous variable quantum secret sharing via quantum teleportation. Int. J. Theor. Phys. 52(11), 4174–4184 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  30. Kogias, I., Xiang, Y., He, Q., et al.: Unconditional security of entanglement-based continuous-variable quantum secret sharing. Phys. Rev. A 95(1), 012315 (2017)

    Article  ADS  Google Scholar 

  31. Grice, W.P., Qi, B.: Quantum secret sharing using weak coherent states. arXiv:1906.10488 (2019)

  32. Gong, L., Tian, C., Li, J., et al.: Quantum network dialogue protocol based on continuous-variable GHZ states. Quantum Inf. Process 17(12), 331 (2018)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  33. Kang, Y., Liao, Q., Geng, J., et al.: Continuous variable quantum secret sharing with chinese remainder theorem. Int. J. Theor. Phys., 1–12 (2019)

  34. Shannon, C.E.: Communication theory of secrecy systems. Bell Syst. Technical J 28(4), 656–715 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  35. Gong, L.H., Li, J.F., Zhou, N.R.: Continuous variable quantum network dialogue protocol based on single-mode squeezed states. Laser Phys. Lett. 15(10), 105204 (2018)

    Article  ADS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (Grant Nos. 61872390,61871407), and the Natural Science Foundation of Hunan Province (Grant No. 2017JJ3415).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yanyan Feng.

Additional information

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix: The four-particle CV GHZ states

Appendix: The four-particle CV GHZ states

The CV four-particle GHZ entangled states (aA, aB, aC, aD)are

$$ \begin{array}{@{}rcl@{}} x_{A} &=& \sqrt{\frac{1}{4}}e^{r}\hat{x}_{4}^{(0)}-\sqrt{\frac{1}{12}}e^{-r}\hat{x}_{3}^{(0)}-\sqrt{\frac{1}{6}}e^{-r}\hat{x}_{2}^{(0)}-\sqrt{\frac{1}{2}}e^{-r}\hat{x}_{1}^{(0)}, \\ p_{A} &=& \sqrt{\frac{1}{4}}e^{-r}\hat{p}_{4}^{(0)}-\sqrt{\frac{1}{12}}e^{r}\hat{p}_{3}^{(0)}-\sqrt{\frac{1}{6}}e^{r}\hat{p}_{2}^{(0)}-\sqrt{\frac{1}{2}}e^{r}\hat{p}_{1}^{(0)}, \\ x_{B} &=& \sqrt{\frac{1}{4}}e^{r}\hat{x}_{4}^{(0)}-\sqrt{\frac{1}{12}}e^{-r}\hat{x}_{3}^{(0)}-\sqrt{\frac{1}{6}}e^{-r}\hat{x}_{2}^{(0)}+\sqrt{\frac{1}{2}}e^{-r}\hat{x}_{1}^{(0)}, \\ p_{B} &=& \sqrt{\frac{1}{4}}e^{-r}\hat{p}_{4}^{(0)}-\sqrt{\frac{1}{12}}e^{r}\hat{p}_{3}^{(0)}-\sqrt{\frac{1}{6}}e^{r}\hat{p}_{2}^{(0)}+\sqrt{\frac{1}{2}}e^{r}\hat{p}_{1}^{(0)}, \\ x_{C} &=& \sqrt{\frac{1}{4}}e^{r}\hat{x}_{4}^{(0)}-\sqrt{\frac{1}{12}}e^{-r}\hat{x}_{3}^{(0)}+\sqrt{\frac{2}{3}}e^{-r}\hat{x}_{2}^{(0)}, \\ p_{C} &=& \sqrt{\frac{1}{4}}e^{-r}\hat{p}_{4}^{(0)}-\sqrt{\frac{1}{12}}e^{r}\hat{p}_{3}^{(0)}+\sqrt{\frac{2}{3}}e^{r}\hat{p}_{2}^{(0)}, \\ x_{D} &=& \sqrt{\frac{1}{4}}e^{r}\hat{x}_{4}^{(0)}+\sqrt{\frac{3}{4}}e^{-r}\hat{x}_{3}^{(0)},\\ p_{D} &=& \sqrt{\frac{1}{4}}e^{-r}\hat{p}_{4}^{(0)}+\sqrt{\frac{3}{4}}e^{r}\hat{p}_{3}^{(0)}, \\ \end{array} $$
(28)

where \(a^{(0)}_{j}=\hat {x}_{j}^{(0)}+i\hat {p}_{j}^{(0)}, j=\{1,2,3,4\}\) is a vacuum state and \(\hat {x}_{j}^{(0)}, \hat {p}_{j}^{(0)} \sim N(0,1)\) follows the Gaussian distribution. As the squeezed parameter |r| increases, the correlations among all states aj = xj + ipj, j = {A, B, C, D} become increasingly perfect, i.e.,

$$ \begin{array}{@{}rcl@{}} \underset{r\rightarrow +\infty}{\lim} x_{A}-x_{B}&=0,\\ \underset{r\rightarrow +\infty}{\lim} x_{A}-x_{C}&=0,\\ \underset{r\rightarrow +\infty}{\lim} x_{A}-x_{D}&=0,\\ \underset{r\rightarrow +\infty}{\lim} p_{A} +p_{B}+p_{C}+p_{D}&=0. \end{array} $$
(29)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kang, Y., Guo, Y. & Feng, Y. Quantum Secret Sharing Based on Continuous-Variable GHZ States. Int J Theor Phys 59, 2308–2320 (2020). https://doi.org/10.1007/s10773-020-04501-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10773-020-04501-5

Keywords

Navigation