Skip to main content
Log in

Hydrogeochemistry of granitic mountain zones and the influence of adjacent sedimentary basins at their tectonic borders: the case of the Spanish Central System batholith

Hydrogéochimie des zones montagneuses granitiques et influence des bassins sédimentaires adjacents sur leurs bordures tectoniques: le cas du système batholitique central d’Espagne

Hidrogeoquímica de zonas montañosas graníticas e influencia de las cuencas sedimentarias adyacentes en sus bordes tectónicos: el caso del batolito del Sistema Central Español

花岗岩山区的水文地球化学及其构造边界附近的相邻沉积盆地的影响:以西班牙中央系统岩基为例

Hidrogeoquímica de regiões montanhosas graníticas e influência de bacias sedimentares adjacentes nas bordas tectônicas: caso do batólito do Sistema Central Espanhol

  • Paper
  • Published:
Hydrogeology Journal Aims and scope Submit manuscript

Abstract

The hydrogeochemical characteristics of springs in the granites of the Spanish Central System (SCS), a mountain range affected by cortical tectonic structures, are described, along with an investigation of the spring water origin. In springs with variable flow and where they are associated with minor alterations and fractures, water type is Ca-(Na)-HCO3 with low total dissolved solids (TDS; 54–200 ppm) and a neutral or slightly acid pH. In springs that have continuous flow and association with relevant fractures, water type is Na-HCO3, with higher pH and TDS (240–563 ppm). There are five springs with water type Na-(Ca)-Cl and high TDS (780–9,205 ppm) near the SCS’s southern tectonic borders. Within 5,000 years of apparent residence time, Ca-(Na)-HCO3 water progresses to Na-HCO3 type, slightly increasing HCO3 content, losing Ca due to calcite precipitation and ionic exchange, and gaining S due to sulphate reduction. No changes are observed after 20,000 years of apparent age. The influence of internal CO2 is compatible with Na-HCO3 water type characteristics, facilitated by fracturing. Most of the springs yield cold water; thus, a flow depth up to 500 m can be deduced. Only the Messejana-Plasencia fault region shows Na-HCO3-type thermal springs. Chloride type water is a result of the influence of the Tertiary basins’ water moving towards the southern border of the SCS. The reverse fault in such contact, together with the subvertical structures affected by it, are responsible for the springs emerging in the granite. The northern border of the SCS shows the opposite behaviour.

Résumé

Les caractéristiques hydrogéochimiques des sources des granites du Système Espagnol Central (SEC), une chaine de montage affectée par des structures tectoniques corticales, sont décrites conjointement à la recherche de l’origine des eaux de ces sources. Dans les sources à flux variable et là où elles sont associées à des altérations et fractures mineures, l’eau est de type Ca-(Na)-HCO3 avec une faible concentration en minéraux dissous totaux (TDS)(54–200 ppm) et un pH neutre ou légèrement acide. Pour les sources à flux régulier et associées à des fractures importantes, l’eau est de type Na-HCO3, avec des pH et TDS élevés (240–563 ppm). Il y a cinq sources de type Na-(Ca)-Cl et TDS élevés (780–9,205 ppm) proches du sud de la bordure tectonique du SEC. Pendant les 5,000 années du temps de résidence apparent, les eaux de type Ca-(Na)-HCO3 progressent vers un type Na-HCO3 avec une légère augmentation de la concentration en HCO3 et une perte de Ca du fait de la précipitation de calcite et des échanges ioniques, et un gain de S du fait de la réduction des sulfates. Pour des eaux de plus de 20,000 ans d’âge apparent, aucune évolution du type d’eau n’est notée. L’influence du CO2 interne est compatible avec les caractéristiques d’eau de type Na-HCO3, elle est facilitée par la fracturation. La plupart des sources délivrent une eau froide, ce qui permet de déduire une profondeur de flux au-dessus de 500 m. Seule la région de la faille de Messejana-Plasencia montre des eaux thermales de type Na-HCO3. Les eaux de type chloruré résultent de l’influence des eaux du bassin tertiaire circulant vers la bordure sud du SEC. La faille inverse à ce contact, ainsi que les structures subverticales influencées par elle, sont responsables de l’émergence de sources dans le granite. La bordure nord du SEC montre un comportement inverse.

Resumen

Se describen las características hidrogeoquímicas de manantiales en granitos del Sistema Central Español (SCS), una cadena montañosa afectada por estructuras tectónicas corticales, junto con una investigación sobre su origen. En manantiales con caudal variable y asociados con pequeñas alteraciones y fracturas, el tipo hidroquímico predominante es Ca-(Na)-HCO3, con bajo contenido de sólidos disueltos totales (TDS) (54–200 ppm) y pH neutro o ligeramente ácido. En manantiales de caudal continuo y asociados con fracturas relevantes, el tipo de agua es Na-HCO3, con mayor pH y TDS (240–563 ppm). Hay cinco manantiales con agua del tipo Na-(Ca)-Cl y alto TDS (780–9,205 ppm) cerca de los bordes tectónicos del sur del SCS. El agua subterránea del tipo Ca-(Na)-HCO3, evoluciona a agua del tipo Ca-(Na)-HCO3 antes de 5,000 años de edad aparente, aumentando ligeramente el contenido de HCO3, perdiendo Ca debido a la precipitación de calcita e intercambio iónico, y ganando S debido a la reducción de sulfatos. No se observan cambios después de 20,000 años de edad aparente. Las características del agua del tipo Na-HCO3 son compatibles con una posible influencia de CO2 de origen interno movilizado a través de fracturas. El agua de la mayoría de los manantiales es fría, por lo que se puede deducir una profundidad de flujo de hasta 500 m. Solo en la región afectada por la falla Messejana-Plasencia y sus asociadas, existen manantiales termales, del tipo Na-HCO3. Los manantiales con aguas cloruradas son el resultado de la influencia del agua subterránea de las cuencas terciarias que fluyen hacia el borde sur del SCS. La falla inversa que marca dicho borde, junto con las estructuras subverticales afectadas por ella, son responsables de la aparición de estos manantiales clorurados. El borde norte del SCS muestra un comportamiento opuesto.

摘要

描述了西班牙中央系统(SCS)花岗岩中泉水的水文地球化学特征, 该SCS的山区范围受皮层构造结构影响, 并对泉水起源进行了调查。泉水的流量是变动的, 而且泉水区与较小的蚀变和裂缝有关, 泉水类型为Ca-(Na)-HCO3, 总溶解固体(TDS)低(54–200 ppm), pH为中性或弱酸性。在具有连续流量并有裂缝的泉水中, 水类型为Na-HCO3, 具有较高的pH和TDS(240–563 ppm)。在SCS南部构造边界附近, 有五个泉水为Na-(Ca)-Cl型和高TDS(780–9,205 ppm)。在表观滞留时间为5,000年内, Ca-(Na)-HCO3型水变成Na-HCO3型, HCO3含量略有增加, 方解石沉淀和离子交换而失去Ca, 并且硫酸盐还原而获得S。在20,000年的表观年龄之后没有观察到任何变化。内部CO2的影响与Na-HCO3水类型特征一致, 并通过压裂得以体现。大多数泉水会产生冷水, 因此可以推断出最大500 m的水流深度。仅Messejana-Plasencia断层区域显示Na-HCO3型温泉。氯化物类型水是第三纪盆地水流向SCS南部边界的影响的结果。这种接触的逆断层, 以及受其影响的亚垂直结构, 是花岗岩中涌出泉水的原因。 SCS的北部边界表现出相反的行为。

Resumo

As características hidrogeoquímicas das nascentes nos granitos no Sistema Central Espanhol (SCE), uma cadeia de montanhas afetada por estruturas tectônicas corticais, são descritas, juntamente com a investigação da origem da água das nascentes. Nas nascentes com fluxo variável e onde há associação com alterações menores e fraturas, a água é do tipo Ca-(Na)-HCO3 com baixo teor de sólidos totais dissolvidos (STD) (54–200 ppm) e pH neutro a ligeiramente ácido. Nas nascentes com fluxo contínuo e associação a fraturas relevantes, o tipo de água é Na-HCO3, com pH mais elevado e STD (240–563 ppm). Há cinco nascentes com água tipo Na-(Ca)-Cl e alto STD (780–9,205 ppm), próximas à borda tectônica sul do SCE. Em 5,000 anos de tempo aparente de residência, água tipo Ca-(Na)-HCO3 progride para o tipo Na-HCO3, com leve diminuição do conteúdo de HCO3, perdendo Ca devido à precipitação de calcita e troca iônica, e ganhando S devido à redução do sulfato. Nenhuma mudança foi observada após 20,000 anos de idade aparente. A influência do CO2 interno é compatível com as características da água tipo Na-HCO3, facilitada pelo faturamento. A maioria das nascentes produz água fria, de modo que uma profundidade de fluxo de até 500 m pode ser deduzida. Apenas a região da falha Messejana-Plasencia mostra nascentes termais do tipo Na-HCO3. Água tipo Cl é um resultado da influência da água de bacias terciárias que se movem em direção à borda sul do SCE. A falha reversa nesse contato, junto com as estruturas subverticais que ela afeta, é responsável pelas fontes que aparecem no granito. A borda norte do SCE mostra o comportamento contrário.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  • Almeida C, Calado C (1993) Chemical components of deep origin in sulphide waters of the Portuguese sector of the Hesperian massif. Memoires of the 24th Congress International Association of Hydrogeologists, Oslo, Norway, part I, IAH, Goring, UK, pp 377–387

  • Armandine LL, Aquilina L, Davy P, Vergnaud-Ayraud V, Le Carlier C (2015) Timescales of regional circulation of saline fluids in continental crystalline rock aquifers (Armorican Massif, western France). Hydrol Earth Syst Sci 19(3):1413–1426

  • ANTHOS (2019) Sistema de información de las plantas de España [Information system of plants in Spain]. Royal Botanical Garden, CSIC- Biodiversity Foundation. www.ANTHOS.es. Accessed May 2019

  • Banwart S, Gustaffsson E, Laaksoharju M, Nilsson A-C, Tullborg E-L, Wallin B (1994) Large-scale intrusion of shallow water into a vertical fracture in crystalline bedrock:initial hydrochemical perturbation during tunnel construction at the Äspö Hard Rock Laboratory. Water Resour Res 30(6):1747–1763

    Article  Google Scholar 

  • Bellido F, Contreras E, Sánchez R, Roldán F (1992) Mapa Geológico de España 1:50.000, Hoja 624, Navalmoral de la Mata [Geological map of Spain 1: 50,000, Sheet 624, Navalmoral de la Mata]. IGME, Madrid

  • Biswas A, Nath B, Bhattacharya P, Halder D, Kundu AK, Mandal U, Mukherjee A, Chatterjee D, Mörth CM, Jacks G (2012) Hydrogeochemical contrast between brown and gray sand aquifers in shallow depth of Bengal Basin: consequences for sustainable drinking water supply. Sci Total Environ 431:402–412. https://doi.org/10.1016/j.scitotenv.2012.05.031

    Article  Google Scholar 

  • Carreira PM, Marques JM, Carvalho MR, Capasso G, Grassa F (2010) Mantle-derived carbon in hercynian granites: stable isotope signatures and C/He associations in the thermomineral waters, N-Portugal. J Volcanol Geotherm Res 189:49–56

    Article  Google Scholar 

  • Cartigny P, Jendrzejewski N, Pineau F, Petit EE, Javoy M (2001) Volatiles (C, N, Ar) variability in MORB and the respective roles of the mantle source heterogeneity and degassing: the case of the Southwest Indian Ridge. Earth Planet Sci Lett 194:241–257

    Article  Google Scholar 

  • Castany G (1963) Traité pratique des eaux souterraines [Practical aspects of groundwaters]. Dunod, Paris, France

    Google Scholar 

  • Castro A, Corretgé LG, De La Rosa J, Enrique P, Martínez FJ, Pascual E, Lago M, Arranz E, Galé C Fernández C, Donaire T, López S (2002) Paleozoic magmatism. In: Gibbons W, Moreno MT (eds) The geology of Spain. Geological Society, London, pp 117–153

  • Chamorro-Villanueva H, López Portillo H, García Rodríguez M (2017) El manantial “los Barrancos” en Valdemorillo (Madrid) y sus aguas radiactivas [The natural spring “Los Barrancos” in Valdemorillo (Madrid) and its radioactive waters]. De Re Metallica 29:65-76

  • CHD (2019) Official web of Duero River Basin Authority. https://www.chduero.es. Accessed April 2019

  • CHT (2019) Official web of Tagus River Basin Authority. www.chduero.es. Accessed April 2019

  • Clark ID, Fritz P (1997) Environmental isotopes in hydrogeology. CRC, Boca Raton, FL, 328 pp

  • Craig H (1961) Isotopic variations in meteoric waters. Science 133(3465):1702–1703

  • De Vicente G, Muñoz-Martín A (2012) The Madrid Basin and the central system: a tectonostratigraphic analysis from 2D seismic lines. Tectonophysics 602:259–285. https://doi.org/10.1016/j.tecto.2012.04.003

    Article  Google Scholar 

  • De Vicente G, Cunha PP, Muñoz-Martín A, Cloetingh SAPL, Olaiz A, Vegas R (2018) The Spanish-Portuguese central system: an example of intense intraplate deformation and strain partitioning. Tectonics 37. https://doi.org/10.1029/2018TC005204

  • Dixon RS, Rosinger ELJ (1984) The Canadian Nuclear Fuel Waste Management Progam, 1983, Annual report, AECL-7811, Atomic Energy of Canada, Chalk River, ON

  • Edmunds W, Savage D (1991) Geochemical characteristics of groundwater in granites and related crystalline rocks. In: Downing RA, Wilkinson WB (eds) Applied groundwater hydrology. Oxford University Press, Oxford, UK, pp 266–282

  • Edmunds WM, Smedley PL (2013) Fluoride in natural Waters. In: Selinus O, Alloway B, Centeno JA, Finkelman RB, Fuge R, Lindh U, Smedley PL (eds) Essentials of medical geology, 2nd edn. Springer, Heidelberg, Germany, pp 311–336

  • Edmunds WM, Kay RLF, Miles DL, Coo JM (1987) The origin of saline groundwaters in the Carmenellis Granite, Cornwall (V.K.): further evidence from minor and trace elements. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geol Soc Can Spec Publ 33:127–143

  • ENRESA (1996) El Berrocal Project. ENRESA, Madrid

  • Frape SK, Fritz P (1987) Geochemical trends for groundwater from the Canadian Shield. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geol Soc Can Spec Publ 33:127–143

  • Freeze RA, Cherry JA (1979) Groundwater. Prentice-Hall, Englewood Cliffs, NJ

  • Fritz P (1997) Saline groundwater and brines in crystalline rocks: the contributions of John Andrews and Jean-Charles Fontes to the solution of a hydrogeological and geochemical problem. Appl Geochem 12:851–856

    Article  Google Scholar 

  • Gascoyne M, Kamineni DC (1994) The hydrogeochemistry of fractured plutonic rocks in the Canadian Shield. Appl Geochem 2:43–49

    Google Scholar 

  • Gavilán F, Fernández-González C (1998) Blasi (1998) climatic classification and ordination of the Spanish Sistema Central: relationships with potential vegetation. Plant Ecol 139:1–11

    Article  Google Scholar 

  • Giménez-Forcada E, Smedley PL (2014) Geological factors controlling occurrence and distribution of arsenic in groundwaters from the southern margin of the Duero Basin, Spain. Environ Geochem Health 36:1029–1047. https://doi.org/10.1007/s10653-014-9599-2

    Article  Google Scholar 

  • Giménez-Forcada E, Vega-Alegre M, Timón-Sánchez SM (2017) Characterization of regional cold-hydrothermal inflows enriched in arsenic and associated trace-elements in the southern part of the Duero Basin (Spain), by multivariate statistical analysis. Sci Total Environ 593–594:211–226

    Article  Google Scholar 

  • Gómez P, Turrero JM, Garralón A, Peña J, Buil B, de la Cruz B, Sánchez M, Sánchez DM, Quejido A, Bajos C, Sánchez L (2006) Hydrogeochemical characteristics of deep groundwaters of the Hesperian massif (Spain). J Iber Geol 32(1):113–131

    Google Scholar 

  • González-Bernáldez FG, Montes C (1989) Los humedales del acuífero de Madrid. Inventario y tipología basada en su origen y funcionamiento [The wetlands of the Madrid aquifer: inventory and typology based on its origin and operation]. Canal de Isabel II, Madrid, 92 pp

  • Grigsby CO, Tester JW, Trujillo PE, Abbot CJ, Holley CE, Blatz LA (1983) Rock–water interactions in hot dry rock geothermal systems: field investigations of in situ geochemical behavior. J Volcanol Geotherm Res 15:101–136

    Article  Google Scholar 

  • Gustafson G, Krásný J (1994) Crystalline rock aquifers: their occurrence, use and importance. Appl Geochem 2:64–75. https://doi.org/10.1007/s100400050051

    Article  Google Scholar 

  • Herráez I (1983) Análisis de las variaciones de los isótopos ambientales estables en el sistema acuífero terciario detrítico de Madrid [Analysis of the variations of stable environmental isotopes in the Madrid detrital Tertiary aquifer system]. PhD Thesis. Univ. Autónoma de Madrid, Spain

  • Hsieh PA (2001) TopoDrive and ParticleFlow: tTwo computer models for simulation and visualization of ground-water flow and transport of fluid particles in two dimensions. US Geol Surv Open-File Rep 01-286, 30 pp

  • Humphreys E, Hessler E, Dueker K, Farmer GL, Erslev E, Atwater T (2003) How Laramide-age hydration of North American lithosphere by the Farallon slab controlled subsequent activity in the western United States. Int Geol Rev 45:575–595

    Article  Google Scholar 

  • IAEA/WMO (2018) Global Network of Isotopes in Precipitation. The GNIP database. https://www.iaea.org/services/networks/gnip. Accessed May 2019

  • IGME (1997) Guía operativa Para la recogida, almacenamiento y transporte de muestras de aguas subterráneas destinadas al análisis químico y bacteriológico [Guide for sampling, storage and transport of groundwater samples for chemical and bacteriological analysis]. Guía Operativa-GOAS-1. IGME, Madrid

  • IGME (2001) Las aguas minerales en España [Mineral waters in Spain]. IGME, Madrid

    Google Scholar 

  • IGME (2012a) Aguas minerales de Castilla-León [Mineral waters of Castilla-León]. http://www.igme.es/aguas_minerales/inventarios/CastillayLeon/WEB%20CyL.htm. Accessed May 2019

  • IGME (2012b) Las AGUAS subterráneas en la planificación hidrológica [Groundwater in the hydrologic planification]. Instituto Geológico y Minero de España, Madrid

  • IGME (2019) Base de datos de metalogenia [Metallogeny database]. Available in http://mapas.igme.es/Servicios/default.aspx#IGME_BDMIN_Explotaciones. Accessed Feb 2019

  • Ingerson E, Pearson FJ Jr. (1964) Estimation of age and rate of motion of groundwater by the 14C method. In: Recent researches in the fields of hydrosphere, atmosphere and nuclear geochemistry Maruzen, Tokyo, pp 263–283

  • Iwatsuki T, Yoshida H (1999) Groundwater chemistry and fracture mineralogy in the basement granitic rock in the Tono uranium mine area, Gifu prefecture, Japan: groundwater composition, Eh evolution analysis by fracture filling minerals. Geochem J 33:19–32

    Article  Google Scholar 

  • Jones BF, Vicente R, Sastre A (1987) Análisis normativo del agua subterránea de la depresión del Campo Arañuelo, región central Española [Normative analysis of groundwater in the Campo Arañuelo depression, central Spanish region]. IV National Symposium of Hydrogeology II, Palma de Mayorca, 1987

  • Junco F (1983) Cuenca Occidental del Tajo [Western Tagus basin]. In: Book tribute to J.M. Rios. Geología de España, Madrid

  • Klaus J, McDonnell JJ (2013) Hydrograph separation using stable isotopes: review and evaluation. J Hydrol 505:47–64

    Article  Google Scholar 

  • Kyu-Youl Sung, Seong-Taek Yun, Maeng-Eon Park, Yong-Kwon Koh, Byoung-Young Choi, Ian Hutcheon, Kyoung-Ho Kim (2012) Reaction path modeling of hydrogeochemical evolution of groundwater in granitic bedrocks, South Korea. J Geochem Explor 118:90-97. https://doi.org/10.1016/j.gexplo.2012.05.004

  • Kyser TK (1986) Stable isotope variations in the mantle. In: Valley JW, Taylor HP, O’Neil JR (eds) Stable isotopes in high-temperature geological processes. Rev Mineral 16:141–164

  • Laaksoharj M, Smellie J, Ruotsalainen P, Snellman M (1993) An approach to quality classification of deep groundwaters in Sweden and Finland. Finnish power companies report YJT-93-24 and SKB technical report TR-93-27, SKB, Stockholm, Sweden

  • Lahermo PW, Lampen PH (1987) Brackish and saline groundwaters in Finland. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks, Geol Soc Can Spec Publ 33:127–143

  • Lamban LJ (1997) Estudio hidrogeológico del sistema acuífero de Carme-CapelladesLa Llacuna-Sant Quintí de Mediona (Cordillera Prelitoral Catalana) [Hydrogeological study of the aquifer system of Carme-CapelladesLa Llacuna-Sant Quintí de Mediona (Catalan Coastal Range)]. PhD Thesis, Technical University of Catalonia (UPC), Barcelona

  • Limberger J, Bonte D, de Vicente G, Beekman F, Cloetingh S, van Wees JD (2017) (2017) a public domain model for 1D temperature and rheology construction in basement-sedimentary geothermal exploration: an application to the Spanish Central System and adjacent basins. Acta Geod Geophys 52:269–282. https://doi.org/10.1007/s40328-017-0197-5

    Article  Google Scholar 

  • Martínez-Galán I (1997) Balnearios y manantiales de aguas mineromedicinales de la Comunidad Autónoma de Madrid [Spas and springs of medicinal mineral waters in the autonomous Community of Madrid]. PhD Thesis, Universidad Complutense de Madrid, Spain

  • Martínez-Nuñez L, Moreno GJV, Chazarra BA, Gallego AT, Avello MME, Botey FR (2015) Mapas de riesgo: heladas y horas de frio en la España peninsular [Risk maps: frost and cold hours in peninsular Spain]. Ministerio de Agricultura, Alimentación y Medio Ambiente Agencia Estatal de Meteorología, Madrid

  • Martín-Loeches M (1995) Hydrogeology of the igneous and metamorphic rocks in a sector of the Alberche river basin and its relationship with the groundwaters of the Madrid basin (in Spanish). PhD Thesis, University of Alcalá de Henares, Madrid, Spain

  • Martín-Loeches M, Yélamos JG (2013) Relationship between certain phreatophytic plants and regional groundwater circulation in hard rocks of the Spanish Central System. In: Groundwater and ecosystems. IAH Selected Papers, vol 18, IAH, Goring, UK, pp 281–295

  • Martín-Velázquez S, De Vicente G, Elorza F-J (2009) Intraplate stress state from finite element modelling: the southern border of the Spanish Central System. Tectonophysics 473(2009):417–427

    Article  Google Scholar 

  • Nordstrom DK, Olsson T, Carlsson L, Fritz P (1989) Introduction to the hydrogeochemical investigations within the international Stripa project. Geochim Cosmochim Acta 53:1717–1726

    Article  Google Scholar 

  • Nurmi PA, Kukkonen IT, Lahermo PW (1988) Geochemistry and origin of saline groundwaters in the Fennoscandian Shield. Appl Geochem 3(2):185-203

  • Pearson FJ, Scholtis A (1993) Chemistry of reference waters of the crystalline basement of northern Switzerland for safety assessment studies. Technical report NTB 93-07, Nagra, Wettingen, Switzerland

  • Pérez del Villar L, de la Cruz B (1989) Caracterización mineralógica y geoquímica del granito sano y alterado del macizo granítico de El Berrocal (Sierra de Gredos, Toledo) [Mineralogical and geochemical characterization of healthy and altered granite from the El Berrocal granite massif (Sierra de Gredos, Toledo)]. Studia Geológica Salmanticensia 26:47–80

    Google Scholar 

  • Pérez-González A, Cancer-Loma G, Peinado M, Casquet C, Villaseca C (1982) Mapa geológico de España 1:50.000, Hoja 558, Majadahonda [Geological map of Spain 1: 50,000, Sheet 558, Majadahonda]. IGME, Madrid

  • Querol R (1989) Geología del subsuelo de la Cuenca del Tajo [Geology of the subsoil of the Tagus Basin]. E.T.S.I. Minas de Madrid. Dept. de Ingeniería Geológica, Madrid, 48 pp

  • Rey-Benayas, JMa, Scheiner SM, García Sánchez-Colomer M; Levassor C (1999) Commonness and rarity: theory and application of a new model to Mediterranean montane grasslands. Conserv Ecol 3(1), art. 5

  • Ribeiro A, Kullberg MC, Kullberg JC, Manuppella G, Phipps S (1990) A review of Alpine tectonics in Portugal: foreland detachment in basement and cover rocks. Tectonophysics 184(3–4):357–366. https://doi.org/10.1016/0040-1951(90)90448-H

    Article  Google Scholar 

  • Rodríguez Fernández LR, López Olmedo F, Oliveira JT, Matas J, Martín-Serrano A, Martín Parra LM, Rubio F, Marín C, Montes M, Nozal F Medialdea T, Terrinha P (2014) Mapa geológico de España y Portugal E 1: 1 000.000 [Geological map of Spain and Portugal E 1:1,000,000]. IGME-LNEG, Madrid

  • Romero C (2010) Juncus L. Flora Iberica 17:123–187. http://www.floraiberica.es. Accessed June 2020

  • Rosino J, Martín-Loeches M, Álvarez-Díaz I, Galán-Vergara JI (2003) Recursos minerales de Extremadura: las aguas minerales [Mineral resources of Extemadura: the mineral waters]. JUNTA DE EXTREMADURA, Consejería de Economía, Industria y Comercio, Dirección General de Ordenación Industrial, Energía y Minas, Mérida, Spain

  • Simler R (2018) Software “diagrammes” [Software “diagrams”]. Laboratoire d’Hydrologie d’Avignon, Université d’Avignon et pays du Vaucluse, France. http://www.lha.univ-avignon.fr. Accessed May 2019

  • Solomon DK, Cook PG (2000) 3H and 3He. In: Cook PG, Herczeg AL (eds) Environmental tracers in subsurface hydrology. Springer, Boston, MA

  • Toth J (1962) A theory of groundwater motion in small drainage basins in central Alberta, Canada. J Geophys Res 67(11):4372–4387

    Google Scholar 

  • EPA-Vic (2009) IWRG701: sampling and analysis of waters, wastewaters, soils and wastes. EPA-Victoria, Australia. https://www.epa.vic.gov.au/about-epa/publications/iwrg701. Accessed 10 April 2020

  • Vázquez-Suñé E, ManzanoM, Soler A (2009) Isotopía ambiental aplicada a las aguas subterráneas [Environmental isotopes in groundwater]. In: Hidrogeología [Hydrogeology]. Comisión docente curso Internacional de Hidrología Subterránea, Barcelona

  • Vegas R, Banda E (1982) Tectonic framework and evolution of the Iberian Peninsula. Earth Evol Sci 2(4):320–343

    Google Scholar 

  • Vegas R, Vázquez JT, Suriñach E, Marcos A (1990) Model of distributed deformation, block rotations and crustal thickening for the formation of the Spanish Central System. Tectonophysics 184:367–378. https://doi.org/10.1016/0040-1951(90)90449-I

    Article  Google Scholar 

  • Vicente, R. (1986) Regional hydrogeology of Campo Arañuelo basin (in Spanish). PhD Thesis, Alcalá de Henares University (UAH), Madrid

  • Villamor MP (2002) Cinemática terciaria y cuaternaria de la falla de Alentejo-Plasencia y su influencia en la peligrosidad sísmica del interior de la península ibérica (Quaternary and Tertiary kinematics of the Alentejo-Plasencia fault and its influence on the seismic danger of the interior of the Iberian Peninsula). PhD Thesis, Universidad Complutense de Madrid, Spain, 343 pp

  • Villarroya FI, Yélamos JG, Molina MA, Sanz E (2006) Hydrogeology of igneous and metamorphic rocks in the Guadarrama Sierra tunnel of the Madrid-Segovia high velocity railway (Spain). In: Chambel A (ed) Proceedings of the 2nd Workshop of the IAH Iberian Regional Working Group on Hard Rock Hydrogeology, Évora, Portugal, May 2005, pp 189–200

  • Vindel E, López-García JA, Martín Crespo T, García-Romero E (2000) Fluid evolution and hydrothermal processes of the Spanish Central System. J Geochem Explor 69–70:359–362

    Article  Google Scholar 

  • Vovk IF (1987) Radiolytic salt enrichment and brines in the crystalline basement of the east European platform. In: Fritz P, Frape SK (eds) Saline water and gases in crystalline rocks. Geol Soc Can Spec Publ 33:127–143

    Google Scholar 

  • Yélamos JG (1991) Hydrogeology of the plutonic and metamorphic rocks at the meridional side of Guadarrama Range (in Spanish). PhD Thesis, Autonomus University of Madrid (UAM), Spain

  • Yélamos JG, Sanz-Pérez E, Escavy-Fernández JI (2019) Las aguas subterráneas del Parque Nacional de la Sierra de Guadarrama [Groundwater of the National Park of the Guadarrama Range]. Bol Geol Min 130(4):743–772. https://doi.org/10.21701/bolgeomin.130.4.009743

    Article  Google Scholar 

Download references

Acknowledgements

The authors want to thank the Spanish Nuclear Fuel and Waste Management Company (ENRESA) for providing relevant data used in this work. We want to express our gratitude to the three anonymous reviewers, whose constructive comments contributed to improvement of this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Martín-Loeches.

Electronic supplementary material

ESM 1

(PDF 664 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martín-Loeches, M., Pavón-García, J., Molina-Navarro, E. et al. Hydrogeochemistry of granitic mountain zones and the influence of adjacent sedimentary basins at their tectonic borders: the case of the Spanish Central System batholith. Hydrogeol J 28, 2477–2500 (2020). https://doi.org/10.1007/s10040-020-02202-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10040-020-02202-1

Keywords

Navigation