Skip to main content
Log in

Isometry groups of closed Lorentz 4-manifolds are Jordan

  • Original Paper
  • Published:
Geometriae Dedicata Aims and scope Submit manuscript

Abstract

We prove that for any closed Lorentz 4-manifold (Mg) the isometry group \({\text {Isom}}(M,g)\) is Jordan. Namely, there exists a constant C (depending on M and g) such that any finite subgroup \(\Gamma \le {\text {Isom}}(M,g)\) has an abelian subgroup \(A\le \Gamma \) satisfying \([\Gamma :A]\le C\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Notes

  1. Recall that a manifold is closed if it is compact and has no boundary.

  2. See e.g. Lemma 3.1 below for some references.

References

  1. Myers, S.B., Steenrod, N.E.: The group of isometries of a Riemannian manifold. Ann. Math. (2) 40(2), 400–416 (1939)

    Article  MathSciNet  Google Scholar 

  2. D’Ambra, G.: Isometry groups of Lorentz manifolds. Invent. Math. 92, 555–565 (1988)

    Article  MathSciNet  Google Scholar 

  3. Adams, S., Stuck, G.: The isometry group of a compact Lorentz manifold, I. Invent. Math. 129, 239–261 (1997)

    Article  MathSciNet  Google Scholar 

  4. Adams, S., Stuck, G.: The isometry group of a compact Lorentz manifold, II. Invent. Math. 129, 263–287 (1997)

    Article  MathSciNet  Google Scholar 

  5. Gromov, M.: Rigid transformation groups. In: Bernard, D., Choquet-Bruhat, Y. (eds.) Géometrie différentielle, Travaux encours 33, Hermann, Paris (1988)

  6. Kowalsky, N.: Noncompact simple automorphism groups of Lorentz manifolds. Ann. Math. 144, 611–640 (1997)

    Article  MathSciNet  Google Scholar 

  7. Zeghib, A.: The identity component of the isometry group of a compact Lorentz manifold. Duke Math. J. 92, 321–333 (1998)

    Article  MathSciNet  Google Scholar 

  8. Zimmer, R.: On the automorphism group of a compact Lorentz manifold and other geometric manifolds. Invent. Math. 83, 411–426 (1986)

    Article  MathSciNet  Google Scholar 

  9. Piccione, P., Zeghib, A.: Actions of discrete groups on stationary Lorentz manifolds. Ergod. Theory Dyn. Syst. 34(5), 1640–1673 (2014)

    Article  MathSciNet  Google Scholar 

  10. Jordan, C.: Mémoire sur les équations différentielles linéaires à intégrale algébrique. J. Reine Angew. Math. 84, 89–215 (1878)

    MATH  Google Scholar 

  11. Boothby, W.M., Wang, H.-C.: On the finite subgroups of connected Lie groups. Comment. Math. Helv. 39, 281–294 (1965)

    Article  MathSciNet  Google Scholar 

  12. Popov, V.L.: The Jordan property for Lie groups and automorphism groups of complex spaces. Mathematical Notes, vol. 103, pp. 811–819 (2018) preprint arXiv:1804.00323

  13. Mundet i Riera, I.: Jordan’s theorem for the diffeomorphism group of some manifolds. In: Proceedings of AMS, vol. 138, pp. 2253–2262 (2010)

  14. Zimmermann, B.P.: On Jordan type bounds for finite groups acting on compact \(3\)-manifolds. Arch. Math. 103, 195–200 (2014)

    Article  MathSciNet  Google Scholar 

  15. Csikós, B., Pyber, L., Szabó, E.: Diffeomorphism groups of compact \(4\)-manifolds are not always Jordan, preprint arXiv:1411.7524

  16. Mundet i Riera, I.: Non Jordan groups of diffeomorphisms and actions of compact Lie groups on manifolds. Transformation Groups. vol. 22, no. 2, pp. 487–501 (2017) https://doi.org/10.1007/s00031-016-9374-9 preprint arXiv:1412.6964

  17. Mundet i Riera, I., Sáez Calvo, C.: Which finite groups act on a given 4-manifold?, preprint arXiv:1901.04223

  18. Mumford, D.: On the equations defining abelian varieties. I. Invent. Math. 1, 287–354 (1966)

    Article  MathSciNet  Google Scholar 

  19. Mundet i Riera, I.: Finite groups acting symplectically on \(T^2\times S^2\). Trans. AMS 369(6), 4457–4483 (2017)

    Article  MathSciNet  Google Scholar 

  20. Zarhin, Y.G.: Theta groups and products of abelian and rational varieties. Proc. Edinb. Math. Soc. (2) 57(1), 299–304 (2014)

    Article  MathSciNet  Google Scholar 

  21. Chu, H., Kobayashi, S.: The automorphism group of a geometric structure. Trans. Am. Math. Soc. 113, 141–150 (1964)

    Article  MathSciNet  Google Scholar 

  22. Hano, J., Morimoto, A.: Note on the group of affine transformations of an affinely connected manifold. Nagoya Math. J. 8, 71–81 (1955)

    Article  MathSciNet  Google Scholar 

  23. Hilgert, J., Neeb, K.-H.: Structure and Geometry of Lie Groups, Springer Monographs in Mathematics. Springer, Berlin (2012)

    Book  Google Scholar 

Download references

Acknowledgements

I wish to thank V. Popov for some corrections and useful comments on this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ignasi Mundet i Riera.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This work has been partially supported by the (Spanish) MEC Project MTM2015-65361-P.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mundet i Riera, I. Isometry groups of closed Lorentz 4-manifolds are Jordan. Geom Dedicata 207, 201–207 (2020). https://doi.org/10.1007/s10711-019-00493-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10711-019-00493-7

Keywords

Mathematics Subject Classification

Navigation