Skip to main content
Log in

Can small-bodied Daphnia control Raphidiopsis raciborskii in eutrophic tropical lakes? A mesocosm experiment

  • Research Article
  • Published:
Environmental Science and Pollution Research Aims and scope Submit manuscript

Abstract

Raphidiopsis raciborskii is being considered an expanding, invasive species all over the world. It is a potentially toxin producer cyanobacterium and form blooms specially in (sub)tropical lakes, causing concern to public health. Thus, controlling such phenomena are of vital importance. To test the hypothesis that a tropical clone of Daphnia laevis is able to reduce the biomass of R. raciborskii, we performed a mesocosm experiment simulating a bloom of this cyanobacterium in field conditions and exposing it to ecologically relevant densities of daphniids. In addition, we tested the hypothesis that omnivorous fish would be able to exert a top-down effect on Daphnia, decreasing the effectiveness of this control. We used treatments with (10 and 20 Daphnia L-1) or without Daphnia and fish (3 per mesocosm). Daphnia was able to significantly reduce the biomass of R. raciborskii only at the highest density tested. Fish had low effect on Daphnia biomass, but it is suggested that nutrient recycling by fish might have contributed to the higher R. raciborskii biomass in fish treatments. This is the first evidence of Daphnia control over saxitoxin-producing cyanobacteria in a tropical ecosystem.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Aguilera A, Gómez EB, Kastovsky J, Echenique RO, Salerno GL (2019) The polyphasic analysis of two native Raphidiopsis isolates supports the unification of the genera Raphidiopsis and Cylindrospermopsis (Nostocales, Cyanobacteria). Phycologia 57(2):130–146

    Google Scholar 

  • Anderson TR, Hessen DO, Elser JJ, Urabe J (2005) Metabolic stoichiometry and the fate of excess of carbon and nutrients in consumers. Am Nat 165:1–15

    Google Scholar 

  • Antunes JT, Leão PN, Vasconcelos V (2015) Cylindrospermopsis raciborskii: review of the distribution, phylogeography and ecophysiology of a global invasive species. Front Microbiol 6:1–13

    Google Scholar 

  • Arcifa MS, Northcote TG, Froehlich O (1991) Interactive ecology of two cohabiting characin fishes (Astyanax fasciatus and Astyanax bimaculatus) in an eutrophic Brazilian reservoir. J Trop Ecol 7(2):257–268

    Google Scholar 

  • Attayde JL, Hansson LA (1999) Effects of nutrient recycling by zooplankton and on phytoplankton communities. Oecologia 121:47–54

    Google Scholar 

  • Attayde JL, Menezes RE (2008) Effects of fish biomass and planktivore type on plankton communities. J Plankton Res 30:885–892

    Google Scholar 

  • Azevedo SMFO, Carmichael WW, Jochimsen EM, Rinehart KL, Lau S, Shaw GR, Eaglesham GK (2002) Human intoxication by microcystins during renal dialysis treatment in Caruaru-Brazil. Toxicology 181:441–446

    Google Scholar 

  • Bednarska A, Pietrzak B, Pijanowska J (2014) Effect of poor manageability and low nutritional value of cyanobacteria on Daphnia magna life history performance. J Plankton Res 36:838–847

    Google Scholar 

  • Bittencourt-Oliveira MC, Piccin-Santos V, Kujbida P, Moura AN (2011) Cylindrospermopsin in water supply reservoirs in Brazil determined by immunochemical and molecular methods. J Water Resource Prot 3:349–355

    CAS  Google Scholar 

  • Bonilla S, Aubriot L, Soares MCS, González-Piana M, Fabre A, Huszar VLM, Lürling M, Antoniades D, Padisák J, Kruk C (2012) What drives the distribution of the bloom-forming cyanobacteria Planktothrix agardhii and Cylindrospermopsis raciborskii? FEMS Microbiol Ecol 79:594–607

    CAS  Google Scholar 

  • Bouvy M, Pagano M, Troussellier M (2001) Effects of a cyanobacterial bloom (Cylindrospermopsis raciborskii) on bacteria and zooplankton communities in Ingazeira reservoir (Northeast Brazil). Aquat Microb Ecol 25(3):215–227

    Google Scholar 

  • Bownik A (2010) Harmful algae: effects of alkaloid cyanotoxins on animal and human health. Toxin Rev 29:99–114

    CAS  Google Scholar 

  • Brandão LPM, Fajardo T, Eskinazi-Sant’Anna E, Brito S, Maia-Barbosa P (2012) Fluctuations of the population of Daphnia laevis Birge 1878: a six-year study in a tropical lake. Braz J Biol 72(3):479–487

    Google Scholar 

  • Brett MT, Müller-Navarra DC (1997) The role of highly unsaturated fatty acids in aquatic food web processes. Freshw Biol 38(3):483–499

    CAS  Google Scholar 

  • Brooks JL, Dodson SI (1965) Predation, Body size and composition of Plankton: the effect of a marine planktivore on lake plankton illustrates theory of size, competition and predation. Science 150(3692):28–35

    CAS  Google Scholar 

  • Bruce LC, Hamilton D, Imberger J, Gal G, Gophend M, Zohary T, Hambright KD (2006) A numerical simulation of the role of zooplankton in C, N and P cycling in Lake Kinneret, Israel. Ecol Model 193:412–436

    Google Scholar 

  • Buratti FM, Manganelli M, Vichi S, Stefanelli M, Scardala S, Testai E, Furari E (2017) Cyanotoxins: producing organisms, occurrence, toxicity, mechanism of action and human toxicological risk evaluation. Arch Toxicol 91(3):1049–1130

    CAS  Google Scholar 

  • Burford MA, Beardall J, Willis A, Orr PY, Magalhães VF, Rangel LM, Azevedo SMFO, Neilan BA (2016) Understanding the winning strategies used by the bloom-forming cyanobacterium Cylindrospermopsis raciborskii. Harmful Algae 54:44–53

    Google Scholar 

  • Carpenter SR, Kitchell JF, Hodgson J (1985) Cascading trophic interactions and lake productivity. Bioscience 35:634–639

    Google Scholar 

  • Castilho-Noll MSM, Arcifa MS (2007) Length-weight relationships for zooplanktonic species of a tropical Brazilian lake: Lake Monte Alegre. Acta Limnol Bras 19(1):93–100

    Google Scholar 

  • Chen F, Shu T, Jeppesen E, Liu Z, Chen Y (2013) Restoration of a subtropical eutrophic shallow lake in China: effects on nutrient concentrations and biological communities. Hydrobiologia 718:59–71

    CAS  Google Scholar 

  • Chislock MF, Sarnelle O, Jernigan LM, Wilson AE (2013) Do high concentrations of microcystin prevent Daphnia control of phytoplankton? Water Research 47:1961–1970. Chorus I, Bartram J (1999) Toxic cyanobacteria in water: a guide to their public health consequences, monitoring and management. Published by E and FN Spon, London, on behalf of the World Health Organization, Geneva.

  • Chorus I, Bartram J (1999) Toxic cyanobacteria in water: A guide to their public health consequences, monitoring and management. Published by E and FN Spon, London, on behalf of the World Health Organization, Geneva.

  • Costa SM, Ferrão-Filho AS, Azevedo SMFO (2013) Effects of saxitoxin- and non-saxitoxin-producing strains of the cyanobacterium Cylindrospermopsis raciborskii on the fitness of temperate and tropical cladocerans. Harmful Algae 28:55–63

    Google Scholar 

  • Cunha DGF, Calijuri MC, Lamparelli MC (2013) A trophic state index for tropical/subtropical reservoirs (TSItsr). Ecol Eng 60:126–134

    Google Scholar 

  • Danger M, Lacroix G, Kâ S, Ndour E-H, Corbin D, Lazzaro X (2009) Food-web structure and functioning of temperate and tropical lakes: a stoichiometric viewpoint. Int J Lim 45:11–21

    Google Scholar 

  • Darchambeau F, Faerøvig PJ, Hessen DO (2003) How Daphnia copes with excess carbon in its food. Oecologia 136:336–346

    Google Scholar 

  • Davidson K, Gowen RJ, Tett P, Bresnan E, Harrison PJ, McKinney A, Milligan S, Mills DK, Silke J, Crooks AM (2012) Harmful algal blooms: how strong is the evidence that nutrient ratios and forms influence their occurrence? Estuar Coast Shelf Sci 115:399–413

    CAS  Google Scholar 

  • Dawidowicz P (1990) The effect of Daphnia on filament length of blue-green algae. Hydrobiologia 191:265–268

    Google Scholar 

  • De Bernardi R, Giussani G (1990) Are blue-green algae a suitable food for zooplankton? An overview. Hydrobiologia 200(201):29–41

    Google Scholar 

  • DeMott WR (1998) Utilization of a cyanobacterium and a phosphorus-deficient green alga as complementary resources by daphnids. Ecology 79:2463–2481

    Google Scholar 

  • DeMott WR, Müller-Navarra DC (1997) The importance of highly unsaturated fatty acids in zooplankton nutrition: evidence from experiments with Daphnia, a cyanobacterium and lipid emulsions. Freshw Biol 38:649–664

    CAS  Google Scholar 

  • DeMott WR, Zhang Q-X, Carmichael WW (1991) Effects of toxic cyanobacteria and purified toxins on the survival and feeding of a copepod and three species of Daphnia. Limnol Oceanogr 36:1346–1357

    CAS  Google Scholar 

  • Dumont HJ, Van de Velde I, Dumont S (1975) The dry weight estimate of biomass in a selection of Cladocera, Copepoda and Rotifera from the plankton, periphyton and benthos of continental waters. Oecologia 19(1):75–97

    Google Scholar 

  • Esteves KE (1996) Feeding ecology of three Astyanax species (Characidae, Tetragonopterinae) from a floodplain lake of Mogi-Guaçú River, Paraná River Basin, Brazil. Environ Biol Fish 46:83–101

    Google Scholar 

  • Fabbro LD, Duivenvoorden LJ (1996) Profile of a bloom of the cyanobacterium Cylindrospermopsis raciborskii (Woloszynska) Seenaya and Subba Raju in the Fitzroy River in tropical Central Queensland. Mar Freshw Res 47(5):685–694

    CAS  Google Scholar 

  • Fernández R, Alcocer J (2018) Cyanobacteria consumption by cladocerans: a case study on facilitation. Aquat Ecol 52:245–254

    Google Scholar 

  • Ferrão-Filho AS, Kozlowsky-Suzuki B (2011) Cyanotoxins: bioaccumulation and effects on aquatic animals. Mar Drugs 9:2729–2772

    Google Scholar 

  • Ferrão-Filho AS, Azevedo SMFO, DeMott WR (2000) Effects of toxic and nontoxic cyanobacteria on the life history of tropical and temperate cladocerans. Freshw Biol 45:1–19

    Google Scholar 

  • Ferrão-Filho AS, Soares MCS, Magalhães VF, Azevedo SMFO (2009) Biomonitoring of cyanotoxins in two tropical reservoirs by cladoceran toxicity bioassays. Ecotoxicol Environ Saf 72:479–489

    Google Scholar 

  • Ferrão-Filho AS, Soares MCS, Magalhães VF, Azevedo SMFO (2010) A rapid bioassay for detecting saxitoxins using a Daphnia acute toxicity test. Environ Pollut 158:2084–2093

    Google Scholar 

  • Ferrão-Filho AS, Soares MCS, Lima RS, Magalhães VF (2014a) Effects of Cylindrospermopsis raciborskii (Cyanobacteria) on the swimming behavior of Daphnia (Cladocera). Environ Toxicol Chem 31:223–229

    Google Scholar 

  • Ferrão-Filho AS, Galvão LEC, Magalhães VF (2014b) Differential susceptibility of cladoceran species to a saxitoxin-producer strain of Cylindrospermopsis raciborskii (cyanobacteria). Ecotoxicol Environ Contam 9:33–41

    Google Scholar 

  • Ferrão-Filho AS, Silva DAS, Oliveira TA, Magalhães VF, Pflugmacher S, Silva EM (2017) Single and combined effects of microcystin- and saxitoxin-producing cyanobacteria on the fitness and antioxidant defenses of cladocerans. Environ Toxicol Chem 36:2689–2697

    Google Scholar 

  • Ferrão-Filho AS, Dias TM, Pereira UJ, Santos JA, Kozlowsky-Suzuki B (2019) Nutritional and toxicity constraints of phytoplankton from a Brazilian reservoir to the fitness of cladoceran species. Environ Sci Pollut Res 26:12881–12893

    Google Scholar 

  • Garcia FC, Barbosa FAR, Braz S, Petrucio MM, Faria B (2009) Water quality of an urban reservoir subjected to periodic applications of copper sulphate: the case of Ibirité reservoir, southeast Brazil. Acta Limnol Bras 21:235–243

    Google Scholar 

  • Gliwicz ZM, Lampert W (1990) Food thresholds in Daphnia species in the absence and presence of blue-green filaments. Ecology 71:691–702

    Google Scholar 

  • Gliwicz ZM, Siedlar E (1980) Food size limitation and algae interfering with food collection in Daphnia. Arch Hydrobiol 88:155–177

    Google Scholar 

  • Gobler CJ, Davis TW, Coyne KJ, Boyer GL (2007) Interactive influences of nutrient loading, zooplankton grazing, and microcystin synthetase gene expression on cyanobacterial bloom dynamics in a eutrophic New York lake. Harmful Algae 6:119–133

    CAS  Google Scholar 

  • Hansson LA, Annadotter H, Bergman E, Hamrin SF, Jeppesen E, Kairesalo T, Luokkanen E, Nilsson PA, Søndergaard M, Strand J (1998) Biomanipulation as an application of food chain theory: constraints, synthesis and recommendations for temperate lakes. Ecosystems 1:558–574

    Google Scholar 

  • Hillebrand H, Dürselen CD, Kirshtel D, Pollingher U, Zohary T (1999) Biovolume calculation for pelagic and benthic microalgae. J Phycol 35:403–424

    Google Scholar 

  • Ibelings BW, Havens KE (2008) Cyanobacterial toxins: a qualitative meta-analysis of concentrations, dosage and effects in freshwater, estuarine and marine biota. In: Hudnell HK (ed) Cyanobacterial harmful algal blooms: state of the science and research needs, vol 619, chapter 32. Springer Science, New York, pp 675–732

  • Jeppesen E, Søndergaard M, Mazzeo N, Meerhoff M, Branco CC, Huszar V, Scasso F (2005) Lake restoration and biomanipulation in temperate lakes: relevance for subtropical and tropical lakes. In: Reddy V (ed) Tropical eutrophic lakes: their restoration and management, pp 341–359.

  • Jeppesen E, Meerhoff M, Jacobsen BA, Hansen RS, Søndergaard M, Jensen JP, Lauridsen TL, Mazzeo N, Branco CWC (2007) Restoration of shallow lakes by nutrient control and biomanipulation – the successful strategy varies with lake size and climate. Hydrobiol 581:269–285

    CAS  Google Scholar 

  • Kâ S, Mendoza-Vera JM, Bouvy M, Champalbert G, N’Gom-Kâ R, Pagano M (2012) Can tropical freshwater zooplankton graze efficiently on cyanobacteria? Hydrobiol 679:119–138

    Google Scholar 

  • Kosten S, Huszar VL, Mazzeo N, Scheffer M, Sternberg LSL, Jeppesen E (2009) Lake and watershed characteristics rather than climate influence nutrient limitation in shallow lakes. Ecol Appl 19(7):1791–1804

    Google Scholar 

  • Lacerot G, Kruk C, Lürling M, Scheffer M (2013) The role of subtropical zooplankton as grazers of phytoplankton under different predation levels. Freshw Biol 58:494–503

    Google Scholar 

  • Lagos N, Onodera H, Zagatto PA, Andrinolo D, Azevedo SMFO, Oshima Y (1999) The first evidence of paralytic shellfish toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii, isolated from Brazil. Toxicon 37:1359–1373

    CAS  Google Scholar 

  • Lazzaro X (1997) Do the trophic cascade hypothesis and classical biomanipulation approaches apply to tropical lakes and reservoirs? Verh Internat Verein Theor Angew Limnol 26:719–730

    Google Scholar 

  • Lazzaro X, Bouvy M, Ribeiro-Filho R, Oliveira VS, Sales LT, Vasconcelos ARM, Mata MR (2003) Do fish regulate phytoplankton in shallow eutrophic Northeast Brazilian reservoirs? Freshw Biol 48:649–668

    Google Scholar 

  • Li R, Carmichael WW, Brittain S, Eaglesham GK, Shaw GR, Mahakhant A, Noparatnaraporn N, Yongmanitchai W, Kaya K, Watanabe MM (2001) Isolation and identification of the cyanotoxin cylindrospermopsin and deoxy-cylindrospermopsin from a Thailand strain of Cylindrospermopsis raciborskii (Cyanobacteria). Toxicon 39:973–980

    CAS  Google Scholar 

  • Lorenzi AS, Cordeiro-Araújo MK, Chia MA, Bittencourt-Oliveira MC (2018) Cyanotoxin contamination of semiarid drinking water supply reservoirs. Environ Earth Sci 77:595

    Google Scholar 

  • Lürling M, Mello MM, Van Oosterhout F, De Senerpont Domis LNS, Marinho MM (2018) Response of natural cyanobacteria and algae assemblages to a nutrient pulse and elevated temperature. Front Microbiol 9:1–14

    Google Scholar 

  • Matveev V, Matveeva L, Jones GJ (1994) Study of the ability of Daphnia carinata King to control phytoplankton and resist cyanobacterial toxicity: implications for biomanipulation in Australia. Aust J Mar Freshwat Res 45:889–904

    Google Scholar 

  • McQueen DJ (1998) Freshwater food web biomanipulation: a powerful tool for water quality improvement, but maintenance is required. Lake Reserv Manag 3(2):83–94

    Google Scholar 

  • Meerhoff M, Clemente JM, Teixeira-de Mello F, Iglesias C, Pedersen AR, Jeppesen E (2007) Can warm climate related structure of littoral predator assemblies weaken clear water state in shallow lakes? Glob Chang Biol 13:1888–1897

    Google Scholar 

  • Mesquita MCB, Lürling M, Dorr F, Pinto E, Marinho MM (2019) Combined effect of light and temperature on the production of saxitoxins in Cylindrospermopsis raciborskii strains. Toxins 11:38

    CAS  Google Scholar 

  • Molica RJR, Onodera H, García C, Rivas M, Andrinolo D, Nascimento SM, Meguro H, Oshima Y, Azevedo SMFO, Lagos N (2002) Toxins in the freshwater cyanobacterium Cylindrospermopsis raciborskii (Cyanophyceae) isolated from Tabocas reservoir in Caruaru, Brazil, including demonstration of a new saxitoxin analogue. Phycologia 41:606–611

    Google Scholar 

  • Müller-Navarra DC, Brett MT, Liston AM, Goldman CR (2000) A highly unsaturated fatty acid predicts carbon transfer between primary producers and consumers. Nature 403:74–77

    Google Scholar 

  • Müller-Navarra DC, Brett MT, Park S, Chandra S, Ballantyne AP, Zorita E, Goldman CR (2004) Unsaturated fatty acid content in seston and tropho-dynamic coupling in lakes. Nature 427:69–72

    Google Scholar 

  • Nogueira ICG, Lobo-da-Cunha A, Vasconcelos VM (2006) Effects of Cylindrospermopsis raciborskii and Aphanizomenon ovalisporum (cyanobacteria) ingestion on Daphnia magna midgut and associated diverticula epithelium. Aquat Toxicol 80:194–203

    CAS  Google Scholar 

  • Oshima Y (1995) Postcolumn derivatization liquid chromatographic method for paralytic shellfish toxins. J AOAC Int 78(2):528–532

  • Panosso R, Lürling M (2010) Daphnia magna feeding on Cylindrospermopsis raciborskii: the role of food composition, filament length and body size. J Plankton Res 32:1393–1404

    CAS  Google Scholar 

  • Pearl H, Gardner WS, Havens KE, Joyner AR, McCarthy MJ, Newell SE, Qin B, Scott JT (2016) Mitigating cyanobacterial harmful algal blooms in aquatic ecosystems impacted by climate change and anthropogenic nutrients. Harmful Algae 54:213–222

    Google Scholar 

  • Piccini C, Aubriot L, D’Alessandro B, Martigani F, Bonilla S (2013) Revealing toxin signatures in cyanobacteria: report of genes involved in cylindrospermopsin synthesis from saxitoxin-producing Cylindrospermopsis raciborskii. Advances in Microbiology 03(03):289–296

  • Porter KG, Orcutt JD (1980) Nutritional adequacy, manageability and toxicity as factors that determine the food quality of green and blue-green algae for Daphnia. In: Kerfoot WC (ed) Evolution and Ecology of Zooplankton Communities. Hanover University Press, New England, pp 268–281

    Google Scholar 

  • Ritchie RJ (2006) Consistent sets of spectrophotometric chlorophyll equations for acetone, methanol and ethanol solvents. Photosynth Res 89:27–41

    CAS  Google Scholar 

  • Rocha O, Duncan A (1985) The relationship between cell carbon and cell volume in freshwater algal species used in zooplanktonic studies. J Plankton Res 7:279–294

    Google Scholar 

  • Roggatz CC, Fletcher N, Benoit DM, Algar AC, Doroff A, Wright B, Valero KCW, Hardege JD (2019) Saxitoxin and tetrodotoxin bioavailability increases in future oceans. Nat Clim Chang 9:840–844

    CAS  Google Scholar 

  • Saker ML, Neilan BA (2001) Varied diazotrophies, morphologies, and toxicities of genetically similar isolates of Cylindrospermopsis raciborskii (Nostocales, Cyanophyceae) from northern Australia. Appl Environ Microbiol 67:1839–1845

    CAS  Google Scholar 

  • Sardans J, Rivas-Ubach A, Peñuelas J (2012) The elemental stoichiometry of aquatic and terrestrial ecosystems and its relationships with organismic lifestyle and ecosystem structure and function: a review and perspectives. Biogeochemistry 111:1–39

    Google Scholar 

  • Sarma SSS, Nandini S, Gulati RD (2005) Life history strategies of cladocerans: comparisons of tropical and temperate taxa. Hydrobiol 542:315–333

    Google Scholar 

  • Schoenberg SA, Carlson RE (1984) Direct and indirect effects of zooplankton grazing on phytoplankton in a hypereutrophic lake. Oikos 42:291–302

    CAS  Google Scholar 

  • Schreiber U (1998) Chlorophyll fluorescence: new instruments for special applications. In: Garag G (Ed.), Photosynthesis: mechanisms and effects, Vol. V, (Dordrecht: Kluwer Academic Publishers), pp.4253–4258.

  • Schwarzenberger A, Sadler T, Von Elert E (2013) Effect of nutrient limitation of cyanobacteria on protease inhibitor production and fitness of Daphnia magna. J Exp Biol 216:3649–3655

    CAS  Google Scholar 

  • Severiano JS, Almeida-Melo VLS, Bittencourt-Oliveira MC, Chia MA, Moura AN (2018) Effects of increased zooplankton biomass on phytoplankton and cyanotoxins: a tropical mesocosm study. Harmful Algae 71:10–18

    CAS  Google Scholar 

  • Shapiro J, Lamarra V, Lynch M (1975) Biomanipulation: an ecosystem approach to lake restoration. In: Brezonik PL, Fox JL (eds) Water Quality Management through Biological Control. University of Florida, Gainesville, FL, pp 85–96

    Google Scholar 

  • Sikora A, Dawidowicz P (2017) Breakage of cyanobacterial filaments by small- and large-sized Daphnia: are there any temperature-dependent differences? Hydrobiol 798:119–126

    Google Scholar 

  • Silva LHS, Arcifa MS, Salazar-Torres G, Huszar VLM (2014) Tilapia rendalli increases phytoplankton biomass of a shallow tropical lake. Acta Limnol Brasil 26:429–441

    Google Scholar 

  • Soares MCS, Lürling M, Panosso R, Huszar V (2009) Effects of the cyanobacterium Cylindrospermopsis raciborskii on feeding and life history characteristics of the grazer Daphnia magna. Ecotoxicol Environ Saf 72:1183–1189

    CAS  Google Scholar 

  • Søndergaard M, Jeppesen E, Lauridsen TL, Skov C, Van Nes EH, Roijackers R, Lammens E, Portielje R (2007) Lake restoration: successes, failures and long-term effects. J Appl Ecol 44:1095–1105

    Google Scholar 

  • Soto-Liebe K, Murillo AM, Krock B, Stucken K, Fuentes-Valdés JJ, Trefault N, Cembella A, Vásquez M (2010) Reassessment of the toxin profile of Cylindrospermopsis raciborskii T3 and function of putative sulfotransferases in synthesis of sulfated and sulfonated PSP toxins. Toxicon 56(8):1350–1361

  • Stein RA, DeVries DR, Dettmers JM (1995) Food-web regulation by a planktivore: exploring the generality of the trophic cascade hypothesis. Can J Fish Aquat Sci 52:2518–2526

    Google Scholar 

  • Uhelinger V (1964) Étude statistique dês méthodes de dénombrement planctonique. Arch Sci 77(2):121–123

    Google Scholar 

  • Urrutia-Cordero P, Ekvall MK, Hansson LA (2016) Controlling harmful cyanobacteria: taxa-specific responses of cyanobacteria to grazing by large-bodied Daphnia in a biomanipulation scenario. PLoS One 11(4):e0153032

    Google Scholar 

  • Utermöhl H (1958) Zur Vervollkomrnnung ver quantitativen Phytoplankton-Methodic. Mitt Int Verein Limnol 9:1–38

    Google Scholar 

  • Vanni MJ (2002) Nutrient cycling by animals in freshwater ecosystems. Annu Rev Ecol Evol Syst 33:341–370

    Google Scholar 

  • Vale C, Alfonso A, Vieytes MR, Romarís XM, Arévalo F, Botana AM, Botana LM (2008) In vitro and in vivo evaluation of paralytic shellfish poisoning toxin potency and the influence of the pH of extraction. Anal Chem 80(5):1770–1776

  • Wacker A, Martin-Creuzburg D (2007) Allocation of essential lipids in Daphnia magna during exposure to poor food quality. Funct Ecol 21:738–747

    Google Scholar 

  • Wetzel RG, Likens GE (1990) Limnological analysis. Springer Verlag, New York, 391 p

    Google Scholar 

  • Wilson AE, Chislock MF (2013) Ecological control of cyanobacterial blooms in freshwater ecosystems. In: Ferrão-Filho, A.S. (Ed.), Cyanobacteria: ecology, toxicology and management. Nova Science Publishers, pp. 213-221.

  • Yunes JS, Cunha NT, Barros LP, Proença LAO, Monserrat JM (2003) Cyanobacterial neurotoxins from southern Brazilian freshwaters. Commun Toxicol 9:103–115

    CAS  Google Scholar 

Download references

Acknowledgments

We would like to thank the State water supply and wastewater company (CEDAE) by allowing us to carry out the experiment in their decantation tanks and for all logistic and analysis of nutrients. We thank also Prof. Heitor Evangelista from the State University of Rio de Janeiro for providing the mesocosms and Fabio Q. Abreu and Diego A. C. da Silva for the help with mounting and demounting of the mesocosms.

Funding

This study was supported by Oswaldo Cruz Foundation (PAEF no. IOC-008-FIO-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Aloysio S. Ferrão-Filho.

Additional information

Responsible Editor: Vitor Manuel Oliveira Vasconcelos

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Highlights

Effects of Daphnia laevis and fish on cyanobacterial biomass were tested in mesocosms. Daphnia significantly reduced the biomass of R. raciborskii only at 20 individuals/L. Fish had low effect on Daphnia biomass and likely affected cyanobacteria by N/P. This is the first evidence of Daphnia control over saxitoxin-producing cyanobacteria.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ferrão-Filho, A.S., Pereira, U.J., Vilar, M.C. et al. Can small-bodied Daphnia control Raphidiopsis raciborskii in eutrophic tropical lakes? A mesocosm experiment. Environ Sci Pollut Res 27, 35459–35473 (2020). https://doi.org/10.1007/s11356-020-09737-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11356-020-09737-6

Keywords

Navigation