Skip to main content
Log in

Application of DGT/DIFS combined with BCR to assess the mobility and release risk of heavy metals in the sediments of Nansi Lake, China

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The heavy metal contamination of the aquatic ecosystem is still prevalent even after reduction of the external anthropogenic inputs of the metals. The release of labile heavy metals from the sediments into the water is a potential risk, responsible for the contamination of the aquatic system. Herein, samples of sedimentary column cores were collected in Nansi Lake, and the distribution profiles of the labile and soluble metals (Cd, Cu, Ni, Pb, and Zn) were obtained by the diffusive gradient in thin films (DGT) and the high-resolution dialysis (HR-peeper) technique. Furthermore, the mobility, bioavailability and release risk of the heavy metals were assessed using the results of geochemical sequential extraction, DGT as well as the DGT-induced fluxes in sediments (DIFS) model. The results showed that the profile characteristics of the DGT-labile and soluble heavy metals showed irregular distribution in the sediment cores and Cd, Pb, Zn had an obvious positive correlation with Fe/Mn (p < 0.05). Ni, Cu, and Zn existed primarily in the residual fraction (accounting for 58–76%), while Cd and Pb existed in the reducible fraction (accounting for 50–67%). The Cd and Ni (0.027–0.185) had higher mobility coefficients compared with Pb, Cu, and Zn (0–0.011), and positive diffusive fluxes also proved that Cd and Ni were easy to be released from the sediments. In addition, the R values of five metals (0.18–0.85) ranged between Rdiff to 0.95, indicating that all the metals had partially sustained case from the sediments solid phase. Based on the DIFS model, the five metals had weak mobility from the sediment to pore water, but the release risks in the Nansi Lake should also be of concern, especially for the highly mobile Cd and Ni in the Dushan Lake.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Ahmed, F., Fakhruddin, A. N. M., Imam, M. D. T., Khan, N., Khan, T. A., Rahman, M. M., et al. (2016). Spatial distribution and source identification of heavy metal pollution in roadside surface soil, a study of Dhaka Aricha highway, Bangladesh. Ecological Processes, 5(1), 2.

    Google Scholar 

  • Boparai, H. K., Joseph, M., & O’Carroll, D. M. (2011). Kinetics and thermodynamics of cadmium ion removal by adsorption onto nano zerovalent iron particles. Journal of Hazardous Materials, 186(1), 458–465.

    CAS  Google Scholar 

  • Chen, M., Cui, J., Lin, J., Ding, S., Gong, M., Ren, M., et al. (2018). Successful control of internal phosphorus loading after sediment dredging for 6 years, A field assessment using high-resolution sampling techniques. Science of the Total Environment, 616–617, 927–936.

    Google Scholar 

  • Davison, W., & Zhang, H. (1994). In situ speciation measurements of trace components in natural waters using thin-film gels. Nature, 367(6463), 546.

    CAS  Google Scholar 

  • Ding, S., Chen, M., Gong, M., Fan, X., Qin, B., Xu, H., et al. (2018). Internal phosphorus loading from sediments causes seasonal nitrogen limitation for harmful algal blooms. Science of the total environment, 625, 872–884.

    CAS  Google Scholar 

  • Ding, S., Han, C., Wang, Y., Yao, L., Wang, Y., Xu, D., et al. (2015). In situ, high-resolution imaging of labile phosphorus in sediments of a large eutrophic lake. Water Research, 74, 100–109.

    CAS  Google Scholar 

  • Ding, S., Xu, D., Wang, Y., Wang, Y., Li, Y., Gong, M., et al. (2016). Simultaneous measurements of eight oxyanions using high-capacity diffusive gradients in thin films (Zr-oxide DGT) with a high-efficiency elution procedure. Environmental Science & Technology, 50(14), 7572–7580.

    CAS  Google Scholar 

  • Dragun, Z., Raspor, B., & Roje, V. (2008). The labile metal concentrations in Sava River water assessed by diffusive gradients in thin films. Chemical Speciation & Bioavailability, 20(1), 33–46.

    CAS  Google Scholar 

  • Duodu, G. O., Goonetilleke, A., & Ayoko, G. A. (2016). Comparison of pollution indices for the assessment of heavy metal in Brisbane River sediment. Environmental Pollution, 219, 1077–1091.

    CAS  Google Scholar 

  • Elisa, P., Sara, C., Matteo, C., Elena, P., Jadran, F., Gianpiero, A., et al. (2016). Mobility of metal(loid)s at the sediment-water interface in two tourist port areas of the Gulf of Trieste (northern Adriatic Sea). Environmental Science and Pollution Research, 144, 2329–2335.

    Google Scholar 

  • Ernstberger, H., Davision, W., Zhang, H., Tye, A., & Yo, S. (2002). Measurement and Dynamic Modeling of Trace Metal Mobilization in Soils Using DGT and DIFS. Environmental Science & Technology, 36, 349–354.

    CAS  Google Scholar 

  • Fan, Y., Lin, C., He, M., & Yang, Z. (2008). Transport and bioavailability of Cu, Pb, Zn and Ni in surface sediments of Daliao River watersystem. Chinese Journal of Environmrnt Science, 29(12), 3469–3476.

    CAS  Google Scholar 

  • Gao, B., Gao, L., Xu, D., Zhou, Y., & Lu, J. (2018a). Assessment of Cr pollution in tributary sediment cores in the Three Gorges Reservoir combining geochemical baseline and in situ DGT. Science of the Total Environment, 628, 241–248.

    Google Scholar 

  • Gao, B., Gao, L., Zhou, Y., Xu, D., & Zhao, X. (2017a). Evaluation of the dynamic mobilization of vanadium in tributary sediments of the Three Gorges Reservoir after water impoundment. Journal of Hydrology, 551, 92–99.

    CAS  Google Scholar 

  • Gao, L., Gao, B., Yin, S., Xu, D., & Gao, J. (2018b). Predicting Ni dynamic mobilization in reservoir riparian soils prior to water submergence using DGT and DIFS. Chemosphere, 195, 390–397.

    CAS  Google Scholar 

  • Gao, L., Gao, B., Zhou, Y., Xu, D., & Sun, K. (2017b). Predicting remobilization characteristics of cobalt in riparian soils in the Miyun Reservoir prior to water retention. Ecological Indicators, 80, 196–203.

    CAS  Google Scholar 

  • Gong, M., Jin, Z., Wang, Y., Lin, J., & Ding, S. (2017). Coupling between iron and phosphorus in sediments of shallow lakes in the middle and lower reaches of Yangtze River using diffusive gradients in thin films (DGT). Chinese Journal of Lake Science, 29(5), 1103–1111.

    Google Scholar 

  • Guan, D.-X., Zheng, J.-L., Luo, J., Zhang, H., Davison, W., & Ma, L. Q. (2017). A diffusive gradients in thin-films technique for the assessment of bisphenols desorption from soils. Journal of Hazardous Materials, 331, 321–328.

    CAS  Google Scholar 

  • Han, C., Ding, S., Yao, L., Shen, Q., Zhu, C., Wang, Y., et al. (2015). Dynamics of phosphorus–iron–sulfur at the sediment–water interface influenced by algae blooms decomposition. Journal of Hazardous Materials, 300, 329–337.

    CAS  Google Scholar 

  • Han, S., Naito, W., Hanai, Y., & Masunaga, S. (2013). Evaluation of trace metals bioavailability in Japanese river waters using DGT and a chemical equilibrium model. Water Research, 47(14), 4880–4892.

    CAS  Google Scholar 

  • Harper, M. P., Davison, W., & Tych, W. (2000). DIFS—A modelling and simulation tool for DGT induced trace metal remobilisation in sediments and soils. Environmental Modelling & Software, 15(1), 55–66.

    Google Scholar 

  • Harper, M. P., Davison, W., Zhang, H., & Tych, W. (1998). Kinetics of metal exchange between solids and solutions in sediments and soils interpreted from DGT measured fluxes. Geochimica et Cosmochimica Acta, 62(16), 2757–2770.

    CAS  Google Scholar 

  • Heltai, G., Győri, Z., Fekete, I., Halász, G., Kovács, K., Takács, A., et al. (2018). Longterm study of transformation of potentially toxic element pollution in soil/water/sediment system by means of fractionation with sequential extraction procedures. Microchemical Journal, 136, 85–93.

    CAS  Google Scholar 

  • Huo, S., Zhang, J., Yeager, K. M., Xi, B., Qin, Y., He, Z., et al. (2015). Mobility and sulfidization of heavy metals in sediments of a shallow eutrophic lake, Lake Taihu, China. Chinese Journal of Environment Science, 31(5), 1–11.

    CAS  Google Scholar 

  • Jin, Z., Ding, S., Sun, Q., Gao, S., Fu, Z., Gong, M., et al. (2019). High resolution spatiotemporal sampling as a tool for comprehensive assessment of zinc mobility and pollution in sediments of a eutrophic lake. Journal of Hazardous Materials, 364, 182–191.

    CAS  Google Scholar 

  • Ke, X., Gui, S., Huang, H., Zhang, H., Wang, C., & Guo, W. (2017). Ecological risk assessment and source identification for heavy metals in surface sediment from the Liaohe River protected area, China. Chemosphere, 175, 473–481.

    CAS  Google Scholar 

  • Kennou, B., El Meray, M., Romane, A., & Arjouni, Y. (2015). Assessment of heavy metal availability (Pb, Cu, Cr, Cd, Zn) and speciation in contaminated soils and sediment of discharge by sequential extraction. Environmental Earth Sciences, 74(7), 5849–5858.

    CAS  Google Scholar 

  • Lee, S.-W., Cho, H. G., & Kim, S.-O. (2019). Comparisons of human risk assessment models for heavy metal contamination within abandoned metal mine areas in Korea. Environmental Geochemistry and Health, 41(1), 481–505.

    CAS  Google Scholar 

  • Li, C., Ding, S., Yang, L., Wang, Y., Ren, M., Chen, M., et al. (2018). Diffusive gradients in thin films, devices, materials and applications. Environmental Chemistry Letters, 17(2), 801–831.

    Google Scholar 

  • Li, Y., Tang, C., Wang, J., Acharya, K., Du, W., Gao, X., et al. (2017). Effect of wave–current interactions on sediment resuspension in large shallow Lake Taihu, China. Environment Science Pollution Research, 24(4), 4029–4039.

    Google Scholar 

  • Li, Z., Liu, J., Chen, H., Li, Q., Yu, C., Huang, X., et al. (2019). Water environment in the Tibetan Plateau, heavy metal distribution analysis of surface sediments in the Yarlung Tsangpo River Basin. Environmental Geochemistry and Health, 2019, 1–19.

    Google Scholar 

  • Lin, J., Sun, Q., Ding, S., Wang, D., Wang, Y., Chen, M., et al. (2017). Mobile phosphorus stratification in sediments by aluminum immobilization. Chemosphere, 186, 644–651.

    CAS  Google Scholar 

  • Linnik, P. M., & Zubenko, I. B. (2000). Role of bottom sediments in the secondary pollution of aquatic environments by heavy-metal compounds. Lakes & Reservoirs, Research & Management, 5(1), 11–21.

    Google Scholar 

  • Liu, C., Fan, C., Shen, Q., Shao, S., Zhang, L., & Zhou, Q. (2016). Effects of riverine suspended particulate matter on post-dredging metal re-contamination across the sediment–water interface. Chemosphere, 144, 2329–2335.

    CAS  Google Scholar 

  • Liu, E., Shen, J., Wang, J., & Yuan, H. (2010). Chemical forms of the heavy metals in surface sediment form Nansi Lake and their diffusion flux at the sediment-water interface. Environmental Chemistry, 29(5), 870–874.

    Google Scholar 

  • Luo, H., Zhou, J., & Guo, Z. (2005). Analysis and assessment of the impact of South-to-North Water Diversion Project on water environment of Nansihu Lake. Chinese Journal of Hohai University (Natural Sciences), 33(1), 63–67.

    CAS  Google Scholar 

  • Maiz, I., Arambarri, I., Garcia, R., & Millán, E. (2000). Evaluation of heavy metal availability in polluted soils by two sequential extraction procedures using factor analysis. Environmental Pollution, 110(1), 3–9.

    CAS  Google Scholar 

  • Martínez, C. E., & McBride, M. B. (2001). Cd, Cu, Pb, and Zn coprecipitates in Fe oxide formed at different pH, aging effects on metal solubility and extractability by citrate. Environmental Toxicology and Chemistry, 20(1), 122–126.

    Google Scholar 

  • Menegario, A. A., Yabuki, L. N. M., Luko, K. S., Williams, P. N., & Blackburn, D. M. (2017). Use of diffusive gradient in thin films for in situ measurements, A review on the progress in chemical fractionation, speciation and bioavailability of metals in waters. Analytica Chimica Acta, 983, 54–66.

    CAS  Google Scholar 

  • Menezes-Blackburn, D., Zhang, H., Stutter, M., Giles, C. D., Darch, T., George, T. S., et al. (2016). A holistic approach to understanding the desorption of phosphorus in soils. Environmental Science & Technology, 50(7), 3371–3381.

    CAS  Google Scholar 

  • Pang, X., Dai, J., Hu, X., Song, Z., Yu, C., Chen, L., et al. (2018). Background values of soil geochemistry in Shandong province. Chinese Journal of Shandong land resources, 34(1), 39–43.

    Google Scholar 

  • Precht, E., Franke, U., Polerecky, L., & Huettel, M. (2004). Oxygen dynamics in permeable sediments with wave-driven pore water exchange. Limnology and Oceanography, 49(3), 693–705.

    CAS  Google Scholar 

  • Pueyo, M., Mateu, J., Rigol, A., Vidal, M., López-Sánchez, J., & Rauret, G. (2008). Use of the modified BCR three-step sequential extraction procedure for the study of trace element dynamics in contaminated soils. Environmental Pollution, 152(2), 330–341.

    CAS  Google Scholar 

  • Ren, J., Williams, P. N., Luo, J., Ma, H., & Wang, X. (2015). Sediment metal bioavailability in Lake Taihu, China, evaluation of sequential extraction, DGT, and PBET techniques. Environmental Science and Pollution Research, 22(17), 12919–12928.

    CAS  Google Scholar 

  • Roulier, J.-L., Belaud, S., & Coquery, M. (2010). Comparison of dynamic mobilization of Co, Cd and Pb in sediments using DGT and metal mobility assessed by sequential extraction. Chemosphere, 79(8), 839–843.

    CAS  Google Scholar 

  • Santschi, P., Höhener, P., Benoit, G., & Buchholtz-ten Brink, M. (1990). Chemical processes at the sediment–water interface. Marine Chemistry, 30, 269–315.

    CAS  Google Scholar 

  • Søndergaard, J., Bach, L., & Gustavson, K. (2014). Measuring bioavailable metals using diffusive gradients in thin films (DGT) and transplanted seaweed (Fucus vesiculosus), blue mussels (Mytilus edulis) and sea snails (Littorina saxatilis) suspended from monitoring buoys near a former lead–zinc mine in West Greenland. Marine Pollution Bulletin, 78(1–2), 102–109.

    Google Scholar 

  • Song, Z., Shan, B., & Tang, W. (2018). Evaluating the diffusive gradients in thin films technique for the prediction of metal bioaccumulation in plants grown in river sediments. Journal of Hazardous Materials, 344, 360–368.

    CAS  Google Scholar 

  • Sun, H., Gao, B., Gao, L., Xu, D., & Sun, K. (2018). Assessing Cu remobilization in reservoir riparian soils prior to water impoundment using DGT and geochemical fractionation. Geoderma, 327, 55–62.

    CAS  Google Scholar 

  • Tang, W., Duan, S., Shan, B., Zhang, H., Zhang, W., Zhao, Y., et al. (2016). Concentrations, diffusive fluxes and toxicity of heavy metals in pore water of the Fuyang River, Haihe Basin. Ecotoxicology and Environmental Safety, 127, 80–86.

    CAS  Google Scholar 

  • Tian, C., Pei, H., Hu, W., & Xie, J. (2012). Variation of cyanobacteria with different environmental conditions in Nansi Lake, China. Journal of Environmental Sciences, 24(8), 1394–1402.

    CAS  Google Scholar 

  • Ullman, W. J., & Aller, R. C. (1982). Diffusion coefficients in nearshore marine sediments 1. Limnology and Oceanography, 27(3), 552–556.

    CAS  Google Scholar 

  • Wang, D., Gong, M., Li, Y., Xu, L., Wang, Y., Jing, R., et al. (2016). In situ, high-resolution profiles of labile metals in sediments of Lake Taihu. International Journal of Environmental Research and Public Health, 13(9), 884.

    Google Scholar 

  • Wang, L.-F., Yang, L.-Y., Kong, L.-H., Li, S., Zhu, J.-R., & Wang, Y.-Q. (2014). Spatial distribution, source identification and pollution assessment of metal content in the surface sediments of Nansi Lake, China. Journal of Geochemical Exploration, 140, 87–95.

    CAS  Google Scholar 

  • Wang, Y., Ding, S., Ren, M., Li, C., Xu, S., Sun, Q., et al. (2019). Enhanced DGT capability for measurements of multiple types of analytes using synergistic effects among different binding agents. Science and Total Environment, 657, 446–456.

    CAS  Google Scholar 

  • Wang, Y., Ding, S., Shi, L., Gong, M., Xu, S., & Zhang, C. (2017). Simultaneous measurements of cations and anions using diffusive gradients in thin films with a ZrO-Chelex mixed binding layer. Analytica Chimica Acta, 972, 1–11.

    CAS  Google Scholar 

  • Wu, Z., Jiao, L., & Wang, S. (2016). The measurement of phosphorus, sulfide and metals in sediment of Dianchi Lake by DGT (diffusive gradients in thin films) probes. Environmental Earth Sciences, 75(3), 193.

    Google Scholar 

  • Xu, D., Ding, S., Sun, Q., Zhong, J., Wu, W., & Jia, F. (2012). Evaluation of in situ capping with clean soils to control phosphate release from sediments. Science of the Total Environment, 438, 334–341.

    CAS  Google Scholar 

  • Xu, D., Gao, B., Peng, W., Gao, L., Wan, X., & Li, Y. (2019). Application of DGT/DIFS and geochemical baseline to assess Cd release risk in reservoir riparian soils, China. Science of the Total Environment, 646, 1546–1553.

    CAS  Google Scholar 

  • Xu, J., Zhang, J., Huo, S., Xi, B., He, Z., & Xu, Y. (2017). High-resolution profiles of trace metals assessed by DGT techniques in lake sediment porewaters. Environmental Earth Sciences, 76(8), 319.

    Google Scholar 

  • Xu, Q., Gao, L., Peng, W., Gao, B., Xu, D., & Sun, K. (2018). Assessment of labile Zn in reservoir riparian soils using DGT, DIFS, and sequential extraction. Ecotoxicology and Environmental Safety, 160, 184–190.

    CAS  Google Scholar 

  • Yang, L., Ji, S., Enfeng, L., & Wei, Z. (2011). Water quality evaluation for the main inflow rivers of Nansihu lake. In Advances in computer science, environment, ecoinformatics, and education—International conference, CSEE 2011, Wuhan, China, August, proceedings, part I (pp. 21–22).

  • Yang, L., Shen, J., Zhang, Z., Jin, Z., & Zhu, Y. (2004). Human influence on heavy metal distribution in the upper Lake Nansi sediments, Shandong Province, China. Chinese Journal of Geochemistry, 23(2), 177–185.

    CAS  Google Scholar 

  • Yang, L., Wang, L., Wang, Y., & Zhang, W. (2015). Geochemical speciation and pollution assessment of heavy metals in surface sediments from Nansi Lake, China. Environmental Monitoring and Assessment, 187(5), 261.

    Google Scholar 

  • Zhang, H. (2004). In-situ speciation of Ni and Zn in freshwaters, comparison between DGT measurements and speciation models. Environmental Science & Technology, 38(5), 1421–1427.

    CAS  Google Scholar 

  • Zhang, H., & Davison, W. (1995). Performance characteristics of diffusion gradients in thin films for the in situ measurement of trace metals in aqueous solution. Analytical Chemistry, 67(19), 3391–3400.

    CAS  Google Scholar 

  • Zhang, W., Cao, F., Yang, L., Dai, J., & Pang, X. (2018). Distribution, fractionation and risk assessment of mercury in surficial sediments of Nansi Lake, China. Environmental Geochemistry and Health, 40(1), 115–125.

    CAS  Google Scholar 

  • Zhao, X., Gao, B., Xu, D., Gao, L., & Yin, S. (2017). Heavy metal pollution in sediments of the largest reservoir (Three Gorges Reservoir) in China, a review. Environmental Science and Pollution Research, 24(26), 20844–20858.

    CAS  Google Scholar 

Download references

Acknowledgements

This study was funded by Key R&D plan of Shandong province in 2019 (Public Welfare Project) (2019GSF110016), the Natural Science Foundation of Shandong Province (ZR2016DM10).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liyuan Yang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, M., Li, C., Yang, L. et al. Application of DGT/DIFS combined with BCR to assess the mobility and release risk of heavy metals in the sediments of Nansi Lake, China. Environ Geochem Health 42, 3765–3778 (2020). https://doi.org/10.1007/s10653-020-00638-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00638-8

Keywords

Navigation