Skip to main content
Log in

Strategies in a metallophyte species to cope with manganese excess

  • Original Paper
  • Published:
Environmental Geochemistry and Health Aims and scope Submit manuscript

Abstract

The effect of exposure to high Mn concentration was studied in a metallophyte species, Erica andevalensis, using hydroponic cultures with a range of Mn concentrations (0.06, 100, 300, 500, and 700 mg L−1). At harvest, biomass production, element uptake, and biochemical indicators of metal stress (leaf pigments, organic acids, amino acids, phenols, and activities of catalase, peroxidase, superoxide dismutase) were determined in leaves and roots. Increasing Mn concentrations led to a decrease in biomass accumulation, and tip leaves chlorosis was the only toxicity symptom detected. In a similar way, photosynthetic pigments (chlorophylls a and b, and carotenoids) were affected by high Mn levels. Among organic acids, malate and oxalate contents in roots showed a significant increase at the highest Mn concentration, while in leaves, Mn led to an increasing trend in citrate and malate contents. An increase of Mn also induced an increase in superoxide dismutase activity in roots and catalase activity in leaves. As well, significant changes in free amino acids were induced by Mn concentrations higher than 300 mg L−1, especially in roots. No significant changes in phenolic compounds were observed in the leaves, but root phenolics were significantly increased by increasing Mn concentrations in treatments. When Fe supply was increased 10 and 20 times (7–14 mg Fe L−1 as Fe-EDDHA) in the nutrient solutions at the highest Mn concentration (700 mg Mn L−1), it led to significant increases in photosynthetic pigments and biomass accumulation. Manganese was mostly accumulated in the roots, and the species was essentially a Mn excluder. However, considering the high leaf Mn concentration recorded without toxicity symptoms, E. andevalensis might be rated as a Mn-tolerant species.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Abreu, M. M., Tavares, M. T., & Batista, M. J. (2008). Potential use of Erica andevalensis and Erica australis in phytoremediation of sulphide mine environments: São Domingos, Portugal. Journal of Geochemical Exploration, 96, 210–222.

    CAS  Google Scholar 

  • Aebi, H. (1984). Catalase in vitro. Methods in Enzymology, 105, 121–126.

    CAS  Google Scholar 

  • Baldisserotto, C., Ferroni, L., Meidi, V., Pagnoni, A., Pellizzari, M., Fasulo, M. P., et al. (2004). Specific intra-tissue responses to manganese in the floating lamina of Trapa natans L. Plant Biology, 6, 578–589.

    CAS  Google Scholar 

  • Berni, R., Luyckx, M., Xu, X., Legay, S., Sergeant, K., Hausman, J. F., et al. (2018). Reactive oxygen species and heavy metal stress in plants: Impact on the cell wall and secondary metabolism. Environmental and Experimental Botany, 161, 98–106.

    Google Scholar 

  • Blamey, F. P. C., Hernandez-Soriano, M. C., Cheng, M., Tang, C., Paterson, D. J., Lombi, E., et al. (2015). Synchrotron-based techniques shed light on mechanisms of plant sensitivity and tolerance to high manganese in the root environment. Plant Physiology, 169, 2006–2020.

    Google Scholar 

  • Bowler, C., Slooten, L., Vandenbranden, S., De Rycke, R., Botterman, J., Sybesma, C., et al. (1991). Manganese superoxide dismutase can reduce cellular damage mediated by oxygen radicals in transgenic plants. The EMBO Journal, 10, 1723–1732.

    CAS  Google Scholar 

  • Bradford, M. M. (1976). A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Analytical Biochemistry, 72, 248–254.

    CAS  Google Scholar 

  • Cabezudo, B., & Rivera, J. (1980). Notas taxonómicas y corológicas sobre la Flora de Andalucía occidental, 2: Erica andevalensis Cabezudo y Rivera sp. nov. Lagascalia, 9, 223–226.

    Google Scholar 

  • Callahan, D. L., Baker, A. J. M., Kolev, S. D., & Wedd, A. G. (2006). Metal ion ligands in hyperaccumulating plants. Journal of Biological Inorganic Chemistry, 11, 2–12. https://doi.org/10.1007/s00775-005-0056-7.

    Article  CAS  Google Scholar 

  • Chirinos, R., Campos, D., Arbizu, C., Rogez, H., Rees, J. F., Larondelle, Y., Noratto, G., & Cisneros-Zevallos, L. (2007). Effect of genotype, maturity stage and post-harvest storage on phenolic compounds, carotenoid content and antioxidant capacity, of Andean mashua tubers (Tropaeolum tuberosum Ruiz Pavón). Journal of the Science of Food and Agriculture, 87, 437–446.

    CAS  Google Scholar 

  • Clarkson, D. T. (1988). The uptake and translocation of manganese by plant roots. In R. D. Graham, R. J. Hannam, & N. J. Uren (Eds.), Manganese in soil and plants (pp. 101–111). Dordrecht: Kluwer Academic Publishers.

    Google Scholar 

  • Clemens, S. (2019). Metal ligands in micronutrient acquisition and homeostasis. Plant, Cell and Environment, 42, 2902–2912.

    CAS  Google Scholar 

  • Del Río, L. A., Corpas, F. J., López-Huertas, E., Palma, J. M. (2018). Plant superoxide dismutases: Function under abiotic stress conditions. In Gupta, D. K., & Palma, J. M., Corpas, F. J. (eds.) Antioxidants and antioxidant enzymes in higher plants (pp. 1–26). Springer Int. Publ. https://doi.org/10.1007/978-3-319-75088-0_1

  • Dou, C. M., Fu, X. P., Chen, X. C., Shi, J. Y., & Chen, Y. X. (2009a). Accumulation and interaction of calcium and manganese in Phytolacca americana. Plant Science, 177, 601–606.

    CAS  Google Scholar 

  • Dou, C. M., Fu, X. P., Chen, X. C., Shi, J. Y., & Chen, Y. X. (2009b). Accumulation and detoxification of manganese in hyperaccumulator Phytolacca americana. Plant Biology, 11, 664–670.

    CAS  Google Scholar 

  • El-Jaoual, T., & Cox, D. A. (1998). Manganese toxicity in plants. Journal of Plant Nutrition, 21, 353–386.

    CAS  Google Scholar 

  • Ernst, W. H. O., Kerkleij, J. A. C., & Shat, H. (1992). Metal tolerance in plants. Acta Botanica Neerlandica, 41, 229–248.

    CAS  Google Scholar 

  • Fecht-Christoffers, M. M., Führs, H., Braun, H. P., & Horst, W. J. (2006). The role of hydrogen peroxide-producing and hydrogen peroxide-consuming peroxidases in the leaf apoplast of cowpea in manganese tolerance. Plant Physiology, 140, 1451–1463.

    CAS  Google Scholar 

  • Fernando, D. R., & Lynch, J. P. (2015). Manganese phytotoxicity: New light on an old problem. Annals of Botany, 116, 313–319.

    CAS  Google Scholar 

  • Flis, P., Ouerdane, L., Grillet, L., Curie, C., Mari, S., & Lobinski, R. (2016). Inventory of metal complexes circulating in plant fluids: A reliable method based on HPLC coupled with dual elemental and high-resolution molecular mass spectrometric detection. The New Phytologist, 211, 1129–1141.

    CAS  Google Scholar 

  • Foy, C. D., Chaney, R. L., & White, M. C. (1978). The physiology of metal toxicity in plants. Annual Review of Plant Physiology, 29, 511–566.

    CAS  Google Scholar 

  • Führs, H., Specht, A., Erban, A., Kopka, J., & Horst, W. J. (2012). Functional associations between the metabolome and manganese tolerance in Vigna unguiculata. Journal of Experimental Botany, 63, 329–340.

    Google Scholar 

  • Giannopolities, C. N., & Ries, S. K. (1977). Superoxide dismutases. I. Occurrence in higher plants. Plant Physiology, 59, 309–314.

    Google Scholar 

  • González, A., Steffen, K. L., & Lynch, J. P. (1998). Light and excess manganese. Implications for oxidative stress in common bean. Plant Physiology, 118, 493–504.

    Google Scholar 

  • Gulyás, Z., Simon-Sarkadi, L., Badicsa, E., Nováka, A., Mednyánszky, Z., Szalaia, G., et al. (2017). Redox regulation of free amino acid levels in Arabidopsis thaliana. Physiologia Plantarum, 159, 264–276.

    Google Scholar 

  • Haydon, M. J., & Cobbett, C. S. (2007). Transporters of ligands for essential metal ions in plants. The New Phytologist, 174, 499–506.

    CAS  Google Scholar 

  • Heinrikson, R. L., & Meredith, S. C. (1984). Amino acid analysis by reverse-phase high-performance liquid chromatography: Precolumn derivatization with phenyliso-thiocyanate. Analytical Biochemistry, 136, 65–74.

    CAS  Google Scholar 

  • Horiguchi, T. (1987). Mechanism of manganese toxicity and tolerance of plants. Soil Science and Plant Nutrition, 33, 595–606. https://doi.org/10.1080/00380768.1987.10557608.

    Article  CAS  Google Scholar 

  • Jiménez, A., Hernández, J. A., de Rio, L. A., & Sevilla, F. (1997). Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiology, 114, 275–284.

    Google Scholar 

  • Kabata-Pendias, A. (2011). Trace elements in soils and plants (4th ed.). BocaRaton, FL: CRC Press.

    Google Scholar 

  • Krämer, U. (2010). Metal hyperaccumulation in plants. Annual Review of Plant Biology, 61, 517–534.

    Google Scholar 

  • Leidi, E. O., Gómez, M., & Del Rio, L. A. (1987). Evaluation of biochemical indicators in soybean plants. Superoxide dismutases, chlorophyll contents and photosystem II activity. Journal of Plant Nutrition, 10, 261–271.

    CAS  Google Scholar 

  • Leidi, E. O., Gómez, M., & Del Rio, L. A. (1989). Peroxidase isozyme patterns developed by soybean genotypes in response to manganese and iron stress. Biochimie und Physiology der Pflanzen, 85(391), 396.

    Google Scholar 

  • Li, Q., Chen, L. S., Jiang, H. X., Tang, N., Yang, L. T., Lin, Z. H., et al. (2010). Effects of manganese-excess on CO2 assimilation, ribulose-1,5-bisphosphate carboxylase/oxygenase, carbohydrates and photosynthetic electron transport of leaves, and antioxidant systems of leaves and roots in Citrus grandis seedlings. BMC Plant Biology, 10, 42. https://doi.org/10.1186/1471-2229-10-42.

    Article  CAS  Google Scholar 

  • Lichtenthaler, H. K. (1987). Chlorophylls and carotenoids: Pigments of photosynthetic membranes. In S. P. Colowick & N. O. Kaplan (Eds.), Methods in enzymology (Vol. 148, pp. 350–382). San Diego: Academic Press.

    Google Scholar 

  • Leiser, A. T. (1968). A mucilaginous root sheath in Ericaceae. American Journal of Botany, 55 (3), 391.

    Google Scholar 

  • Mahal, H. S., Kapoor, S., Satpati, A. K., & Mukherjee, T. (2005). Radical scavenging and catalytic activity of metal-phenolic complexes. J Phys Chem B, 109, 24197–24202.

    CAS  Google Scholar 

  • Márquez-García, B., & Córdoba, F. (2010). Antioxidative system in wild populations of Erica andevalensis. Environmental and Experimental Botany, 68, 58–65.

    Google Scholar 

  • Marschner, H. (1995). Mineral nutrition of higher plants. San Diego: Academic Press, Harcourt Brace & Company, Publishers.

    Google Scholar 

  • Memon, A. R., & Yatazawa, M. (1984). Nature of manganese complexes in manganese accumulator plant Acanthopanax sciadophylloides. Journal of Plant Nutrition, 7, 961–974.

    CAS  Google Scholar 

  • Michalak, A. (2006). Phenolic compounds and their antioxidant activity in plants growing under heavy metal stress. Polish Journal of Environmental Studies, 15, 523–530.

    CAS  Google Scholar 

  • Migocka, M., Papierniak, A., Maciaszczyk-Dziubińska, E., Poździk, P., Posyniak, E., Garbiec, A., et al. (2014). Cucumber metal transport protein MTP8 confers increased tolerance to manganese when expressed in yeast and Arabidopsis thaliana. Journal of Experimental Botany, 65, 5367–5384.

    CAS  Google Scholar 

  • Millaleo, R., Reyes-Díaz, M., Alberdi, M., Ivanov, A. G., Krol, M., & Hüner, N. P. A. (2013). Excess manganese differentially inhibits photosystem I versus II in Arabidopsis thaliana. Journal of Experimental Botany, 64, 343–354.

    CAS  Google Scholar 

  • Millaleo, R., Reyes-Díaz, M., Ivanov, A. G., Lora, M. L., & Alberdi, M. (2010). Manganese as essential and toxic element for plants: Transport, accumulation and resistance mechanisms. Journal of Soil Science and Plant Nutrition, 10, 476–494.

    Google Scholar 

  • Monaci, F., Leidi, E. O., Mingorance, M. D., Valdés, B., Rossini Oliva, S., & Bargagli, R. (2011). The selective uptake of major and trace elements in Erica andevalensis, an endemic species to extreme habitats in the Iberian Pyrite Belt. Journal of Environmental Science, 23, 444–452.

    CAS  Google Scholar 

  • Morel, J. L., Mench, M., & Guckert, A. (1986). Measurement of Pb2+, Cu2+ and Cd2+ binding with mucilage exudates from maize (Zea mays L.) roots. Biology and Fertility of Soils, 2, 29–34.

    Google Scholar 

  • Noctor, G., Lelarge-Trouverie, C., & Mhamdi, A. (2015). The metabolomics of oxidative stress. Phytochemistry, 112, 33–53.

    CAS  Google Scholar 

  • Pérez-López, R., Márquez-García, B., Abreu, M. M., Nieto, J. M., & Córdoba, F. (2014). Erica andevalensis and Erica australis growing in the same extreme environments: Phytostabilization potential of mining areas. Geoderma, 230-231, 194–203.

    Google Scholar 

  • Pittman, J. K. (2005). Managing the manganese: Molecular mechanisms of manganese transport and homeostasis. The New Phytologist, 167, 733–742.

    CAS  Google Scholar 

  • Reichman, S. M. (2002). The responses of plants to metal toxicity: A review focusing on copper, manganese and zinc. Melbourne: Australian Minerals & Energy Environment Foundation. ISBN 1-876205-13-X.

    Google Scholar 

  • Rodríguez, N., Amils, R., Jiménez-Ballesta, R., & Rufo, L. (2007). Heavy metal content in Erica andevalensis: An endemic plant from the extreme acidic environment of Tinto River and its soils. Arid Land Research and Management, 21, 51–65.

    Google Scholar 

  • Rossini-Oliva, S., Mingorance, M. D., & Leidi, E. O. (2012). Tolerance to high Zn in the metallophyte Erica andevalensis Cabezudo & Rivera. Ecotoxicology, 21, 2012–2021.

    CAS  Google Scholar 

  • Rossini-Oliva, S., Abreu, M. M., & Leidi, E. O. (2018). A review of hazardous elements tolerance in a metallophyte model species: Erica andevalensis. Geoderma 319, 43–51.

    CAS  Google Scholar 

  • Schüürmann, G., & Markert, B. A. (1998). Ecotoxicology: Ecological fundamentals, chemical exposure, and biological effects. New York: Wiley.

    Google Scholar 

  • Sharma, S. S., & Dietz, K. J. (2006). The significance of amino acids and amino acid-derived molecules in plant responses and adaptation to heavy metal stress. Journal of Experimental Botany, 57, 711–726.

    CAS  Google Scholar 

  • Sharma, S. S., Dietz, K. J., & Mimura, T. (2016). Vacuolar compartmentalization as indispensable component of heavy metal detoxification in plants. Plant, Cell and Environment, 39, 1112–1126.

    CAS  Google Scholar 

  • Singh, S., Parihar, P., Singh, R., Singh, V. P., & Prasad, S. M. (2016). Heavy metal tolerance in plants: Role of transcriptomics, proteomics, metabolomics, and ionomics. Frontiers Plant Science, 6, 1143. https://doi.org/10.3389/fpls.2015.01143.

    Article  Google Scholar 

  • Xu, X., Shi, J., Chen, X., Chen, Y., & Hu, T. (2009). Chemical forms of manganese in the leaves of manganese hyperaccumulator Phytolacca acinosa Roxb. (Phytolaccaceae). Plant and Soil, 318, 197–204.

    CAS  Google Scholar 

  • Zaharieva, T. (1995). Iron-manganese interactions in peanut plants as influenced by the source of applied iron. In: J. Abadia (ed.) Iron nutrition in soils and plants (pp. 277–282). Kluwer Acad. Publ.

  • Venekamp, J. H. (1989). Regulation of cytosol acidity in plants under conditions of drought. Physiologia Plantarum 76(1), 112–117.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sabina Rossini-Oliva.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Rossini-Oliva, S., Abreu, M.M. & Leidi, E.O. Strategies in a metallophyte species to cope with manganese excess. Environ Geochem Health 43, 1523–1535 (2021). https://doi.org/10.1007/s10653-020-00625-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10653-020-00625-z

Keywords

Navigation