Skip to main content
Log in

Dry Bacterial Cellulose and Carboxymethyl Cellulose formulations with interfacial-active performance: processing conditions and redispersion

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Dry or powdered formulations of food additives facilitate transportation, storage, preservation and handling. In this work, dry formulations of bacterial cellulose and carboxymethyl cellulose (BC:CMC), easily redispersible and preserving the functionality of the never-dried dispersions are reported. Different processing parameters and their effect on the materials properties were evaluated, namely: (i) wet-grinding of BC (Hand-blender, Microcut Head Impeller, High-pressure Homogenizer), (ii) drying of BC:CMC mixtures (fast drying at ≈ 130 °C and slow drying at 80 °C) and subsequent (iii) comminution to different particle sizes. The dispersibility of the obtained BC:CMC powders was evaluated, and their functionality after redispersion was assessed by measuring the dynamic viscosity, the effect in oil/water interfacial tension (liquid–liquid system) and the stabilization of cocoa in milk (solid–liquid system). The size of BC fibre bundles was of paramount relevance to its stabilizing ability in multiphasic systems. A more extensive wet-grinding of the BC fibres was accompanied by a loss in the BC:CMC functionality, related to the increasingly smaller size of the BC bundles. Indeed, as the Dv (50) of the wet BC bundles was reduced from 1228 to 55 µm, the BC:CMC viscosity profile dropped and the effect on interfacial tension decreased. This effect was observed both on the never-dried and dry BC:CMC formulations. On the other hand, the drying method did not play a major effect in the materials’ properties. In a benchmarking study, the BC:CMC formulations, at a low concentration (0.15%), had better stabilizing ability of the cocoa particles than several commercial cellulose products.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

Download references

Acknowledgments

This study was supported by FCT under the scope of the strategic funding of UID/BIO/04469/2019 unit and BioTecNorte operation (NORTE-01-0145-FEDER-000004) funded by the European Regional Development Fund under the scope of Norte2020-Programa Operacional Regional do Norte. Daniela Martins also gratefully acknowledges FCT for the PhD scholarship, reference SFRH/BD/115917/2016.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miguel Gama.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1287 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Martins, D., de Carvalho Ferreira, D., Gama, M. et al. Dry Bacterial Cellulose and Carboxymethyl Cellulose formulations with interfacial-active performance: processing conditions and redispersion. Cellulose 27, 6505–6520 (2020). https://doi.org/10.1007/s10570-020-03211-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-020-03211-9

Keywords

Navigation