Skip to main content
Log in

Promotional Effect of Cu for Catalytic Amination of Diethylene Glycol with Tertiarybutylamine over Ni–Cu/Al2O3 Catalysts

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

In this work, we synthesized a series of 20% Ni-x% Cu/Al2O3 catalysts containing various Cu loading by the impregnation method and investigated their catalytic performance in the amination of diethylene glycol (DEG) with tertiarybutylamine (TBA) to tertiarybutylaminoethoxyethanol (TBEE). A variety of characterization techniques including XRD, TEM, BET, XPS, H2-TPR, NH3-TPD, CO2-TPD were applied. The promotional influence of Cu on the catalytic performance of Ni/Al2O3 catalyst was studied, and the optimal addition of Cu was obtained. Indeed, we found that Ni–Cu alloy was formed after reduction of the Ni–Cu/Al2O3 catalysts. Due to the strong interaction between Cu and Ni, Cu could improve the reducibility of NiO and the dispersion of Ni species on the catalyst surface, which were critical factors for higher reactivity of the bimetallic Ni–Cu/Al2O3 catalysts. Moreover, the influence of catalyst reduction temperature and reaction temperature were examined. When operating at 230 °C, the 20% Ni-10% Cu/Al2O3 catalyst reduced at 500 °C for 2 h exhibited superior catalytic performance in this reaction.

Graphic Abstract

Ni-Cu/Al2O3 catalyst was found to be an effective catalyst for catalytic amination of diethylene glycol with tertiarybutylamine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Ho CR, Defalque V, Zheng S, Bell AT (2019) ACS Catal 9:2931–2939

    Article  CAS  Google Scholar 

  2. Hong E, Bang S, Cho JH, Jung KD, Shin C-H (2017) Appl Catal A 542:146–153

    Article  CAS  Google Scholar 

  3. Cho JH, An SH, Chang T-S, Shin C-H (2016) Catal Lett 146:811–819

    Article  CAS  Google Scholar 

  4. Bähn S, Imm S, Neubert L, Zhang M, Neumann H, Beller M (2011) ChemCatChem 3:1853–1864

    Article  CAS  Google Scholar 

  5. Ousmane M, Perrussel G, Yan Z, Clacens JM, De Campo F, Pera-Titus M (2014) J Catal 309:439–452

    Article  CAS  Google Scholar 

  6. Li J, Wu M (2009) Speciality prtrochemical 26:73–77

    Google Scholar 

  7. Gao J, Li S, Jiang J (2003) CN Patent 1(623):978A

    Google Scholar 

  8. Stogryn EL, Winston WS, Montagna AA (1984) US Patent 4,487,976

  9. Corma A, Rodenas T, Sabater MJ (2010) Chemistry 16:254–260

    Article  CAS  PubMed  Google Scholar 

  10. Utsunomiya M, Miyamoto Y, Ipposhi J, Ohshima T, Mashima K (2007) Org Lett 9:3371–3374

    Article  CAS  PubMed  Google Scholar 

  11. Ruiz D, Aho A, Mäki-Arvela P, Kumar N, Oliva H, Murzin DY (2017) Ind Eng Chem Res 56:12878–12887

    Article  CAS  Google Scholar 

  12. Cho JH, Park JH, Chang T-S, Seo G, Shin C-H (2012) Appl Catal A 417–418:313–319

    Article  CAS  Google Scholar 

  13. Li S, Wen M, Chen H, Ni Z, Xu J, Shen J (2017) J Catal 350:141–148

    Article  CAS  Google Scholar 

  14. Tomer A, Wyrwalski F, Przybylski C, Paul J-F, Monflier E, Pera-Titus M, Ponchel A (2017) J Catal 356:111–124

    Article  CAS  Google Scholar 

  15. Tomer A, Yan Z, Ponchel A, Pera-Titus M (2017) J Catal 356:133–146

    Article  CAS  Google Scholar 

  16. Solcova O (1994) Jiratova. J Mol Catal 88:193–204

    Article  CAS  Google Scholar 

  17. Chang H (1992) Nat Gas Chem Ind 17:43–47

    CAS  Google Scholar 

  18. Cheng D, Wang Z, Xia Y, Wang Y, Zhang W, Zhu W (2016) RSC Adv 6:102373–102380

    Article  CAS  Google Scholar 

  19. Gutta N, Velisoju VK, Chatla A, Boosa V, Tardio J, Patel J, Akula V (2018) Energy Fuel 32:4008–4015

    Article  CAS  Google Scholar 

  20. Bayat N, Rezaei M, Meshkani F (2017) Fuel 195:88–96

    Article  CAS  Google Scholar 

  21. Wang X, Zhu L, Liu Y, Wang S (2018) Sci Total Environ 625:686–695

    Article  CAS  PubMed  Google Scholar 

  22. Ma K, Cui Z, Zhang Z, Huang J, Sun Z, Tian Y, Ding T, Li X (2018) ChemCatChem 10:4010–4017

    Article  CAS  Google Scholar 

  23. Wu Q, Duchstein LDL, Chiarello GL, Christensen JM, Damsgaard CD, Elkjaer CF, Wagner JB, Temel B, Grunwaldt J-D, Jensen AD (2014) ChemCatChem 6:301–310

    Article  CAS  Google Scholar 

  24. Gandarias I, Arias PL, Requies J, El Doukkali M, Güemez MB (2011) J Catal 282:237–247

    Article  CAS  Google Scholar 

  25. Freitas IC, Manfro RL, Souza MMVM (2018) Appl Catal B 220:31–41

    Article  CAS  Google Scholar 

  26. Chen L-C, Lin SD (2011) Appl Catal B 106:639–649

    Article  CAS  Google Scholar 

  27. Song K, Lu M, Xu S, Chen C, Zhan Y, Li D, Au C, Jiang L, Tomishige K (2018) Appl Catal B 239:324–333

    Article  CAS  Google Scholar 

  28. Xie Z, Chen B, Wu H, Liu M, Liu H, Zhang J, Yang G, Han B (2019) Green Chem 21:606–613

    Article  CAS  Google Scholar 

  29. Cai B, Zhou X-C, Miao Y-C, Luo J-Y, Pan H, Huang Y-B (2016) ACS Sustain Chem Eng 5:1322–1331

    Article  CAS  Google Scholar 

  30. Seemala B, Cai CM, Kumar R, Wyman CE, Christopher P (2017) ACS Sustain Chem Eng 6:2152–2161

    Article  CAS  Google Scholar 

  31. Fu Z, Wang Z, Lin W, Song W, Li S (2017) Appl Catal A 547:248–255

    Article  CAS  Google Scholar 

  32. Lin J-H, Biswas P, Guliants VV, Misture S (2010) Appl Catal A 387:87–94

    Article  CAS  Google Scholar 

  33. Dasireddy VDBC, Valand J, Likozar B (2018) Renew Energy 116:75–87

    Article  CAS  Google Scholar 

  34. Arbeláez O, Reina TR, Ivanova S, Bustamante F, Villa AL, Centeno MA, Odriozola JA (2015) Appl Catal A 497:1–9

    Article  CAS  Google Scholar 

  35. Yang X, Fu X, Bu N, Han L, Wang J, Song C, Su Y, Zhou L, Lu T (2016) J Iran Chem Soc 14:111–119

    Article  CAS  Google Scholar 

  36. Obregon I, Gandarias I, Miletic N, Ocio A, Arias PL (2015) Chemsuschem 8:3483–3488

    Article  CAS  PubMed  Google Scholar 

  37. Naghash AR, Etsell TH, Xu S (2006) Chem Mater 18:2480–2488

    Article  CAS  Google Scholar 

  38. Cai F, Pan D, Ibrahim JJ, Zhang J, Xiao G (2018) Appl Catal A 564:172–182

    Article  CAS  Google Scholar 

  39. Khromova SA, Smirnov AA, Bulavchenko OA, Saraev AA, Kaichev VV, Reshetnikov SI, Yakovlev VA (2014) Appl Catal A 470:261–270

    Article  CAS  Google Scholar 

  40. Wang D, Zhang Y, Li H, Zhao L, Zhang H, Zhao Y (2013) Chin J Catal 33:1229–1235

    CAS  Google Scholar 

  41. Nataj SMM, Alavi SM, Mazloom G (2018) J Energy Chem 27:1475–1488

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by Jilin Province Science and Technology research plan (Key Scientific Research Project). (No. 20150204020GX).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Zhenlu Wang or Chunlei Zhang.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 702 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wu, Y., Gui, W., Liu, X. et al. Promotional Effect of Cu for Catalytic Amination of Diethylene Glycol with Tertiarybutylamine over Ni–Cu/Al2O3 Catalysts. Catal Lett 150, 2427–2436 (2020). https://doi.org/10.1007/s10562-020-03145-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03145-8

Keywords

Navigation