Skip to main content
Log in

Optical Characterization and Monitoring of Enzyme Catalyzed Short Chain Peptides in Cellular Environment

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Enzyme catalysis is an emerging technique that has been employed to identify the protein of interest in a complex cellular environment. In present article, we have utilized optical techniques for the identification of enzyme mediated catalysis of fusion protein to study the short chain amino acid epitope in both aqueous solution and cellular environment. We characterized enzyme catalysis short chain peptide with electron microscopic techniques, for the study of reaction product and its morphology in aqueous solution. Furthermore, we applied MALDI-TOF-MS technique for the analysis of fusion protein, FLAG-tag peptides and enterokinase enzyme (EK), in complex solutions and cellular environment. The enzyme catalytic reactions were studied HEK-293T cells with confocal fluorescence microscopy. In spectroscopic studies two sharp prominent peaks at 310 nm and 330 nm were appeared in case of Flag-tag peptide and for fusion protein absorption peaks were found at 315 nm and 410 nm with relative increase in intensity level. Furthermore, a linear relation between response unit and binding time (ms) for both fusion protein and EK was observed. Mass spectra reveal the presence of FLAG-tag peptide epitope at mass to charge (m/z) ratio of 2190.023 and 2191.102 in cell lysation with and without enterokinase respectively. We provide here a rapid and accurate trace detection system for enzyme cleaved peptides in fusion protein by taking a snapshot of peptide to identify specific domains based on amino acids and their mass spectrum calculations.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Lomenick B, Olsen RW, Huang J (2011) Identification of direct protein targets of small molecules. ACS Chem Biol 6:34–46

    Article  CAS  PubMed  Google Scholar 

  2. Frederix PWJM, Ulijn RV, Hunt NT, Tuttle T (2011) Virtual screening for dipeptide aggregation: toward predictive tools for peptide self-assembly. J Phys Chem Lett 2:2380–2384

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Sahoo JK, VandenBerg MA, Webber MJ (2018) Injectable network biomaterials via molecular or colloidal self-assembly. Adv Drug Deliv Rev 127:185–207

    Article  CAS  PubMed  Google Scholar 

  4. Sangeetha NM, Maitra U (2005) Supramolecular gels: functions and uses. Chem Soc Rev 34:821–836

    Article  CAS  PubMed  Google Scholar 

  5. Hui E, Gimeno KI, Guan G, Caliari SR (2019) Spatiotemporal control of viscoelasticity in phototunable hyaluronic acid hydrogels. Biomacromolecules 20(11):4126–4134

    Article  CAS  PubMed  Google Scholar 

  6. Damani Shah H, Saranath D, Das S, Kharkar P, Karande A (2019) In-silico identification of small molecules targeting H-Ras and in-vitro cytotoxicity with caspase-mediated apoptosis in carcinoma cells. J Cell Biochem 120:5519–5530

    Article  CAS  PubMed  Google Scholar 

  7. Sun J, Li Z (2018) In: S Koutsopoulos (ed) Peptide applications in biomedicine, biotechnology and bioengineering. Woodhead Publishing, Sawston, pp 183–213

    Chapter  Google Scholar 

  8. Gao Y, Shi J, Yuan D, Xu B (2012) Imaging enzyme-triggered self-assembly of small molecules inside live cells. Nat Commun 3:1033

    Article  PubMed  PubMed Central  Google Scholar 

  9. Habibi N, Kamaly N, Memic A, Shafiee H (2016) Self-assembled peptide-based nanostructures: smart nanomaterials toward targeted drug delivery. Nano Today 11:41–60

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Lewandowski B, Wennemers H (2014) Asymmetric catalysis with short-chain peptides. Curr Opin Chem Biol 22:40–46

    Article  CAS  PubMed  Google Scholar 

  11. Rufo CM, Moroz YS, Moroz OV, Stöhr J, Smith TA, Hu X, DeGrado WF, Korendovych IV (2014) Short peptides self-assemble to produce catalytic amyloids. Nat Chem 6:303–309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Zhang Q, Hernandez T, Smith KW, Hosseini Jebeli SA, Dai AX, Warning L, Baiyasi R, McCarthy LA, Guo H, Chen D-H, Dionne JA, Landes CF, Link S (2019) Unraveling the origin of chirality from plasmonic nanoparticle-protein complexes. Science 365:1475

    Article  CAS  PubMed  Google Scholar 

  13. Popot J-L (ed) (2018) Membrane proteins in aqueous solutions: from detergents to amphipols. Springer, Cham, pp 381–404

    Book  Google Scholar 

  14. Cavagnari BM, Milikowski D, Haller JF, Zanek MC, Santome AJ, Ermácora MR (2002) Optical characterization of armadillo acyl-CoA binding protein. Int J Biol Macromol 31:19–27

    Article  CAS  PubMed  Google Scholar 

  15. Doucet N (2019) Enzyme catalysis under pressure. Nat Catal 2:646–647

    Article  CAS  Google Scholar 

  16. Drout RJ, Robison L, Farha OK (2019) Catalytic applications of enzymes encapsulated in metal–organic frameworks. Coordin Chem Rev 381:151–160

    Article  CAS  Google Scholar 

  17. da Silva RR (2017) Bacterial and fungal proteolytic enzymes: production, catalysis and potential applications. Appl Biochem Biotechnol 183:1–19

    Article  Google Scholar 

  18. Pekov SI, Ivanov DG, Bugrova AE, Indeykina MI, Zakharova NV, Popov IA, Kononikhin AS, Kozin SA, Makarov AA, Nikolaev EN (2019) Evaluation of MALDI-TOF/TOF mass spectrometry approach for quantitative determination of aspartate residue isomerization in the amyloid-β peptide. J Am Soc Mass Spectrom 30:1325–1329

    Article  CAS  PubMed  Google Scholar 

  19. Caetano-Anollés G, Yafremava LS, Gee H, Caetano-Anollés D, Kim HS, Mittenthal JE (2009) The origin and evolution of modern metabolism. Int J Biochem Cell Biol 41:285–297

    Article  PubMed  Google Scholar 

  20. Chen K, Conti PS (2010) Target-specific delivery of peptide-based probes for PET imaging. Adv Drug Deliv Rev 62:1005–1022

    Article  CAS  Google Scholar 

  21. Lau JL, Dunn MK (2018) Therapeutic peptides: historical perspectives, current development trends, and future directions. Bioorg Med Chem 26:2700–2707

    Article  CAS  PubMed  Google Scholar 

  22. Boohaker RJ, Lee MW, Vishnubhotla P, Perez JM, Khaled AR (2012) The use of therapeutic peptides to target and to kill cancer cells. Curr Med Chem 19:3794–3804

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Hu J, Qin H, Sharma M, Cross TA, Gao FP (2008) Chemical cleavage of fusion proteins for high-level production of transmembrane peptides and protein domains containing conserved methionines. Biochim Biophys Acta 1778:1060–1066

    CAS  Google Scholar 

  24. Li Y (2011) Recombinant production of antimicrobial peptides in Escherichia coli: a review. Protein Expr Purif 80:260–267

    Article  CAS  PubMed  Google Scholar 

  25. Schmidt M, Toplak A, Quaedflieg PJLM, van Maarseveen JH, Nuijens T (2017) Enzyme-catalyzed peptide cyclization. Drug Discov Today 26:11–16

    Article  Google Scholar 

  26. Petrin THC, Fadel V, Martins DB, Dias SA, Cruz A, Sergio LM, Arcisio-Miranda M, Castanho MARB, dos Santos CMP (2019) Synthesis and characterization of peptide–chitosan conjugates (PepChis) with lipid bilayer affinity and antibacterial activity. Biomacromolecules 20:2743–2753

    Article  CAS  PubMed  Google Scholar 

  27. Pielak GJ, Li C, Miklos AC, Schlesinger AP, Slade KM, Wang G-F, Zigoneanu IG (2009) Protein nuclear magnetic resonance under physiological conditions. Biochemistry 48:226–234

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Major T, von Janowsky B, Ruppert T, Mogk A, Voos W (2006) Proteomic analysis of mitochondrial protein turnover: identification of novel substrate proteins of the matrix protease pim1. Mol Cell Biol 26:762–776.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Grade H, Cooks RG (1978) Secondary ion mass spectrometry. Cationization of organic molecules with metals. J Am Chem Soc 100:5615–5621

    Article  CAS  Google Scholar 

  30. Strohl WR (2015) Fusion proteins for half-life extension of biologics as a strategy to make biobetters. BioDrugs 29:215–239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Mesbah K, Thai R, Bregant S, Malloggi F (2017) DMF-MALDI: droplet based microfluidic combined to MALDI-TOF for focused peptide detection. Sci Rep 7:6756

    Article  PubMed  PubMed Central  Google Scholar 

  32. Chaurand P, Luetzenkirchen F, Spengler B (1999) Peptide and protein identification by matrix-assisted laser desorption ionization (MALDI) and MALDI-post-source decay time-of-flight mass spectrometry. J Am Soc Mass Spectrom 10:91–103

    Article  CAS  PubMed  Google Scholar 

  33. Gustafsson JOR, Oehler MK, Ruszkiewicz A, McColl SR, Hoffmann P (2011) MALDI imaging mass spectrometry (MALDI-IMS)-application of spatial proteomics for ovarian cancer classification and diagnosis. Int J Mol Sci 12:773–794

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhao X, Barber-Singh J, Shippy SA (2004) MALDI-TOF MS detection of dilute, volume-limited peptide samples with physiological salt levels. Analyst 129:817–822

    Article  CAS  PubMed  Google Scholar 

  35. Strupat K (2005) Molecular weight determination of peptides and proteins by ESI and MALDI. Methods Enzymol 405:1–36

    Article  CAS  PubMed  Google Scholar 

  36. Pan S, Aebersold R, Chen R, Rush J, Goodlett DR, McIntosh MW, Zhang J, Brentnall TA (2009) Mass spectrometry based targeted protein quantification: methods and applications. J Proteome Res 8:787–797

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. de-los-Santos-Álvarez N, Lobo-Castañón MJ, Miranda A, Tuñón-Blanco P (2009) SPR sensing of small molecules with modified RNA aptamers: detection of neomycin B. Biosens Bioelectron 24:2547–2553

    Article  PubMed  Google Scholar 

  38. Fan T, Yu X, Shen B, Sun L (2017) Peptide self-assembled nanostructures for drug delivery applications. J Nanomater 2017:16

    Google Scholar 

  39. Sreerama N, Woody RW (2004) Computation and analysis of protein circular dichroism spectra. Methods Enzymol 383:318–351

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The author thanks the staff of the Institute of Biophysics (IBP) for providing all the supports and technical facilities. Shahzad Anwar in particular is grateful to Professor Tao Xu from Institute of Biophysics (IBP).

Author information

Authors and Affiliations

Authors

Contributions

SA designed the studies. SA, MO, and ZX wrote the paper and conducted the experiments.

Corresponding author

Correspondence to Shahzad Anwar.

Ethics declarations

Conflict of interest

The authors declare no conflicts of interest related to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Anwar, S., Ovais, M. & Zhang, X. Optical Characterization and Monitoring of Enzyme Catalyzed Short Chain Peptides in Cellular Environment. Catal Lett 150, 2400–2408 (2020). https://doi.org/10.1007/s10562-020-03110-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03110-5

Keywords

Navigation