Skip to main content

Advertisement

Log in

Efficient Hydrogen Production from Formic Acid Using Nitrogen-Doped Activated Carbon Supported Pd

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Formic acid (FA) has attracted increasing interest in the utilization as a promising hydrogen carrier. Nitrogen-doped activated carbons were used as support to prepare well-dispersed Pd/C catalyst for hydrogen production from FA. The introduced N species adjusted the electronic properties of Pd and promoted dispersion of Pd, which were beneficial to improve the catalytic activity. Pd supported on the activated carbon aminated at 950 °C (the particle size of Pd is 2.8 ± 0.1 nm) showed the highest turnover frequency (TOF) of 1631 h−1 at 30 °C.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme 1.
Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Eppinger J, Huang KW (2017) ACS Energy Lett 2:188–195

    Article  CAS  Google Scholar 

  2. Grasemann M, Laurenczy G (2012) Energy Environ Sci 5:8171–8181

    Article  CAS  Google Scholar 

  3. Singh AK (2016) Singh S Kumar A. Catal Sci Technol 6:12–40

    Article  Google Scholar 

  4. Li Z, Xu Q (2017) Acc Chem Res 50:1449–1458

    Article  CAS  PubMed  Google Scholar 

  5. Zhou W, Li M, Ding OL, Chan SH (2014) Zhang L Xue Y. Int J Hydrog Energy 39:6433–6442

    Article  CAS  Google Scholar 

  6. Zhang S, Jiang B (2017) Jiang K Cai WB. ACS Appl Mater Inter 9:24678–24687

    Article  CAS  Google Scholar 

  7. Bandosz TJ (1999) Carbon 37:483–491

    Article  CAS  Google Scholar 

  8. Deryło-Marczewska A, Goworek J (2004) Świątkowski A Buczek B. Carbon 42:301–306

    Article  Google Scholar 

  9. Wang ZL, Yan JM, Wang HL (2013) Ping Y Jiang Q. J Mater Chem A 1:12721–12725

    Article  CAS  Google Scholar 

  10. Sun J, Qiu H, Cao W, Fu H, Wan H (2018) Xu Z Zheng S. ACS Sustain Chem Eng 7:1963–1972

    Article  Google Scholar 

  11. Mori K, Masuda S, Tanaka H, Yoshizawa K (2017) Che M Yamashita H. Chem Commun (Camb) 53:4677–4680

    Article  CAS  Google Scholar 

  12. Zhu DJ, Wen YH, Xu Q (2017) Zhu QL Wu XT. Eur J Inorg Chem 2017:4808–4813

    Article  CAS  Google Scholar 

  13. Chen H, Yang G, Feng Y, Shi C, Xu S (2012) Cao W Zhang X. Chem Eng J 198–199:45–51

    Article  Google Scholar 

  14. Zhang W, Jiang X, Wang X, Kaneti YV, Chen Y, Liu J, Jiang JS (2017) Yamauchi Y Hu M. Angew Chem Int Ed Engl 56:8435–8440

    Article  CAS  PubMed  Google Scholar 

  15. Boudou JP, Chehimi M, Broniek E (2003) Siemieniewska T Bimer. J Carbon 41:1999–2007

    Article  CAS  Google Scholar 

  16. Teschner D, Vass E, Havecker M, Zafeiratos S, Schnorch P, Sauer H, Knopgericke A, Schlogl R (2006) Chamam M Wootsch A. J Catal 242:26–37

    Article  CAS  Google Scholar 

  17. Arrigo R, Schuster ME, Xie Z, Yi Y, Wowsnick G, Sun LL, Hermann KE, Friedrich M, Kast P, Hävecker M (2015) Knop-Gericke A Schlögl R. ACS Catal 5:2740–2753

    Article  CAS  Google Scholar 

  18. Arrigo R, Schuster ME, Abate S, Wrabetz S, Amakawa K, Teschner D, Freni M, Centi G, Perathoner S (2014) Havecker M Schlogl R. Chemsuschem 7:179–194

    Article  CAS  PubMed  Google Scholar 

  19. Balmes O, Resta A, Wermeille D, Felici R, Messing ME, Deppert K, Liu Z, Grass ME, Bluhm H, van Rijn R, Frenken JW, Westerstrom R, Blomberg S, Gustafson J (2012) Andersen JN Lundgren E. Phys Chem Chem Phys 14:4796–4801

    Article  CAS  PubMed  Google Scholar 

  20. Wang F, Xu J, Shao X, Su X (2016) Huang Y Zhang T. Chemsuschem 9:246–251

    Article  CAS  PubMed  Google Scholar 

  21. Usachov D, Vilkov O, Gruneis A, Haberer D, Fedorov A, Adamchuk VK, Preobrajenski AB, Dudin P, Barinov A, Oehzelt M (2011) Laubschat C Vyalikh DV. Nano Lett 11:5401–5407

    Article  CAS  PubMed  Google Scholar 

  22. Zacharska M, Bulusheva LG, Lisitsyn AS, Beloshapkin S, Guo Y, Chuvilin AL, Shlyakhova EV, Podyacheva OY, Leahy JJ (2017) Okotrub AV Bulushev DA. Chemsuschem 10:720–730

    Article  CAS  PubMed  Google Scholar 

  23. Li J, Chen W, Zhao H, Zheng X, Wu L, Pan H, Zhu J (2017) Chen Y Lu. J J Catal 352:371–381

    Article  CAS  Google Scholar 

  24. Bulushev DA, Zacharska M, Shlyakhova EV, Chuvilin AL, Guo Y, Beloshapkin S (2015) Okotrub AV Bulusheva LG. ACS Catal 6:681–691

    Article  Google Scholar 

  25. Tedsree K, Li T, Jones S, Chan CW, Yu KM, Bagot PA, Marquis EA (2011) Smith GD Tsang SC. Nat Nanotechnol 6:302–307

    Article  CAS  PubMed  Google Scholar 

  26. Bulushev DA, Jia L (2012) Beloshapkin S Ross JR. Chem Commun 48:4184–4186

    Article  CAS  Google Scholar 

  27. Jeon M, Han DJ, Lee KS, Choi SH, Han J, Nam SW, Jang SC, Park HS, Yoon CW (2016) Int J Hydrog Energy 41:15453–15461

    Article  CAS  Google Scholar 

  28. Kim Y, Kim DH (2019) Appl Catal B-Environ 244:684–693

    Article  CAS  Google Scholar 

  29. Hu C, Pulleri JK (2014) Ting SW Chan KY. Int J Hydrog Energy 39:381–390

    Article  CAS  Google Scholar 

  30. Javaid R (2013) Kawasaki S i, Ookawara R, Sato K, Nishioka M, Suzuki A Suzuki TM. J Chem Eng Jpn 46:751–758

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Key R&D Program of China (Grant Number 2018YFB0604902). The funding source has no role in study design; in the collection, analysis and interpretation of data; in the writing of the report; and in the decision to submit the article for publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Honglin Chen.

Ethics declarations

Conflicts of interest

The authors declare no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 1014 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yao, M., Liang, W., Chen, H. et al. Efficient Hydrogen Production from Formic Acid Using Nitrogen-Doped Activated Carbon Supported Pd. Catal Lett 150, 2377–2384 (2020). https://doi.org/10.1007/s10562-020-03141-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-020-03141-y

Keywords

Navigation