Skip to main content
Log in

Design and test of a compact compliant gripper using the Scott–Russell mechanism

  • Original Article
  • Published:
Archives of Civil and Mechanical Engineering Aims and scope Submit manuscript

Abstract

This paper presents the design, modeling, fabrication, and test of a monolithic compliant gripper for micro-manipulation applications. A compact compliant mechanism that enables in-principle straight-line parallel jaw motion is obtained, by combining the Scott–Russell mechanism and the parallelogram mechanism. The right-circular corner-filleted (RCCF) flexure hinge is adopted to achieve a large displacement of lumped-compliance joints. A pseudo-rigid-body model (PRBM) method with the help of the virtual work principle is performed to obtain parametric analytical models including the amplification coefficient and kinetostatics. Finite element analysis (FEA) is conducted to validate the analytical model and capture adverse parasitic motions of jaws. A monolithic prototype was fabricated, the test results of which show satisfactory performances.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Howell LL. Compliant mechanisms. New York: Wiley; 2001.

    Google Scholar 

  2. Jain RK, Majumder S, Ghosh B, Saha S. Micro manipulation by a compliant piezoelectric micro gripper towards robotic micro assembly. Int J Mechatron Manuf Syst. 2016;9(1):3–23.

    Google Scholar 

  3. George BL, Bharanidaran R. Design of compliant gripper for surgical applications. Aust J Mech Eng. 2019;1–7.

  4. Zubir MN, Mohd BS, Tian Y. Development of a novel flexure-based microgripper for high precision micro-object manipulation. Sens Actuators A. 2009;150(2):257–66.

    Article  Google Scholar 

  5. Deaconescu T, Deaconescu A. Pneumatic muscle-actuated adjustable compliant gripper system for assembly operations. Strojniski Vestnik/J Mech Eng. 2017;63(4):225–34.

    Article  Google Scholar 

  6. Jain RK, Majumder S, Ghosh B. Design and analysis of piezoelectric actuator for micro gripper. Int J Mech Mater Des. 2015;11(3):253–76.

    Article  Google Scholar 

  7. Bhattacharya S, Chattaraj R, Das M, Patra A, Bepari B, Bhaumik S. Simultaneous parametric optimization of IPMC actuator for compliant gripper. Int J Precis Eng Manuf. 2015;16(11):2289–97.

    Article  Google Scholar 

  8. Lofroth M, Avci E. Development of a novel modular compliant gripper for manipulation of micro objects. Micromachines. 2019;10(5):313.

    Article  Google Scholar 

  9. Lamers AJ, Sánchez JAG, Herder JL. Design of a statically balanced fully compliant grasper. Mech Mach Theory. 2015;92:230–9.

    Article  Google Scholar 

  10. Hao G, Hand RB. Design and static testing of a compact distributed-compliance gripper based on flexure motion. Arch Civ Mech Eng. 2016;16(4):708–16.

    Article  Google Scholar 

  11. Carrozza MC, Menciassi A, Tiezzi G, Dario P. The development of a LIGA-microfabricated gripper for micromanipulation tasks. J Micromech Microeng. 1998;8(2):141.

    Article  Google Scholar 

  12. Jain RK, Majumder S, Ghosh B, Saha S. Design and manufacturing of mobile micro manipulation system with a compliant piezoelectric actuator based micro gripper. J Manuf Syst. 2015;35:76–91.

    Article  Google Scholar 

  13. Mehrabi H, Hamedi M, Aminzahed I. A novel design and fabrication of a micro-gripper for manipulation of micro-scale parts actuated by a bending piezoelectric. Microsyst Technol 2019;1–9.

  14. Sun X, et al. A novel piezo-driven microgripper with a large jaw displacement. Microsyst Technol. 2015;21(4):931–42.

    Article  Google Scholar 

  15. Wang DH, Yang Q, Dong HM. A monolithic compliant piezoelectric-driven microgripper: design, modeling, and testing. IEEE/ASME Trans Mechatron. 2011;18(1):138–47.

    Article  Google Scholar 

  16. Zhang D, et al. Development of a monolithic compliant SPCA-driven micro-gripper. Mechatronics. 2015;25:37–433.

    Article  Google Scholar 

  17. Hao G, Li H. Nonlinear analytical modeling and characteristic analysis of a class of compound multibeam parallelogram mechanisms. J Mech Robot. 2015;7(4):041016.

    Article  Google Scholar 

  18. Beroz J, et al. Compliant microgripper with parallel straight-line jaw trajectory for nanostructure manipulation. In: Proceedings of 26th American Society of precision engineering annual meeting, Denver, USA. 2011.

  19. Beroz J, Awtar S, John Hart A. Extensible-link kinematic model for characterizing and optimizing compliant mechanism motion. J Mech Des. 2014;136(3):031008.

    Article  Google Scholar 

  20. Gopal V, Alphin MS, Bharanidaran R. Design of compliant mechanism microgripper utilizing the Hoekens straight line mechanism. J Test Eval. 2019;49(3):1.

    Google Scholar 

  21. Ai W, Xu Q. New structural design of a compliant gripper based on the Scott–Russell mechanism. Int J Adv Rob Syst. 2014;11(12):192.

    Article  Google Scholar 

  22. Liao YG. Design and analysis of a modified Scott Russell straight-line mechanism for a robot end-effector. J Appl Sci Eng Technol. 2011;4:42–9.

    Google Scholar 

  23. Xu Q. Design and development of a novel compliant gripper with integrated position and grasping/interaction force sensing. IEEE Trans Autom Sci Eng. 2015;14(3):1415–28.

    Article  Google Scholar 

  24. Nah SK, Zhong ZW. A microgripper using piezoelectric actuation for micro-object manipulation. Sens Actuators A. 2007;133(1):218–24.

    Article  Google Scholar 

  25. Chen, G-M, Jia J-Y, Li Z-W. Right-circular corner-filleted flexure hinges. In: IEEE international conference on automation science and engineering, 2005. IEEE; 2005.

  26. Edwards BT, Jensen BD, Howell LL. A pseudo-rigid-body model for initially-curved pinned-pinned segments used in compliant mechanisms. J Mech Des. 1999;123(3):464–8.

    Article  Google Scholar 

  27. Joshi RS, Mitra AC, Kandharkar SR. Design and analysis of compliant micro-gripper using pseudo rigid body model (PRBM). Mater Today Proc. 2017;4(2):1701–7.

    Article  Google Scholar 

  28. Sigmund O. On the design of compliant mechanisms using topology optimization. J Struct Mech. 1997;25(4):493–524.

    Google Scholar 

  29. Bruns TE, Tortorelli DA. Topology optimization of non-linear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng. 2001;190(26–27):3443–599.

    Article  Google Scholar 

  30. Sun X, Chen W, Chen W, Qi S, Li W, Hu C, Tao J. Design and analysis of a large-range precision micromanipulator. Smart Mater Struct. 2019;28(11):115031.

    Article  Google Scholar 

  31. Tian Y, Shirinzadeh B, Zhang D, Alici G. Development and dynamic modelling of a flexure-based Scott–Russell mechanism for nano-manipulation. Mech Syst Signal Process. 2009;23(3):957–78.

    Article  Google Scholar 

  32. Sollpaur SB, Patil MS, Deshmukh SP. Evaluation of stiffness and parametric modelling of XY flexure mechanism for precision applications. J Model Simul Mater. 2018;1(1):8–15.

    Article  Google Scholar 

  33. Hao G, Meng Q, Li Y. Design of large-range XY compliant parallel manipulators based on parasitic motion compensation. In: ASME 2013 international design engineering technical conferences and computers and information in engineering conference. American Society of Mechanical Engineers; 2013.

  34. Hao G, Zhu J. Design of a monolithic double-slider based compliant gripper with large displacement and anti-buckling ability. Micromachines. 2019;10(10):665.

    Article  Google Scholar 

Download references

Acknowledgement

The authors would like to thank Mr. Tim Power and Mr. Michael O’Shea in the School of Engineering at University College Cork for their great help in the fabrication work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guangbo Hao.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhu, J., Hao, G. Design and test of a compact compliant gripper using the Scott–Russell mechanism. Archiv.Civ.Mech.Eng 20, 81 (2020). https://doi.org/10.1007/s43452-020-00085-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s43452-020-00085-3

Keywords

Navigation