Skip to main content
Log in

Electronic structure and thermoelectric properties of HfRhZ(Z = As, Sb and Bi) half-Heusler compounds

  • Published:
Applied Physics A Aims and scope Submit manuscript

Abstract

Huge attention has been shifted to thermoelectric properties of half-Heusler compounds because of the ability of these compounds to convert heat into electricity. The calculations of thermoelectric properties of these compounds are necessitated by the search for alternatives to fossil fuel. This report presents ab initio calculations of electronic and thermoelectric properties of the most stable phase of hafnium–rhodium-based arsenic, antimony and bismuth (HfRhZ(Z = As, Sb and Bi)) half-Heusler compounds by density functional theory based on projector augmented wave pseudopotential method with Perdew–Burke–Ernzerhof generalized gradient approximation used for exchange–correlation functional. The properties calculated in this work are the equilibrium lattice constant, the density of states, band structures, Seebeck coefficients, electrical conductivity, power factor and electronic fitness function (EFF). EFF is calculated to overcome the problem of optimizing Seebeck coefficient and electrical conductivity because of inverse proportion relationship between Seebeck coefficient and electrical conductivity. The \(\gamma\) phase of these compounds is found to be most stable, and thus, electronic and thermoelectric properties of this phase are obtained for the p-type HfRhZ( Z = As, Sb and Bi). The p-type HfRhZ(Z = As, Sb and Bi) is a better thermoelectric material than the n-type HfRhZ(Z = As, Sb and Bi). The Seebeck coefficients of these compounds are 272.01  \(\upmu\)V/K, 555.75 \(\upmu\)V/K and 244.92 \(\upmu\)V/K for HfRhAs, HfRhSb and HfRhBi, respectively, and EFF of HfRhAs, HfRhSb and HfRhBi is 1.21\(\times10^{-19}\,\mathrm{W}^{5/3}\,\mathrm{ms}^{-1/3}\,\mathrm{K}^{-2}\) at 1.75\(\times 10^{20}\,{\text{cm}}^{-3}\), 1.55\(\times10^{-19}\,\mathrm{W}^{5/3}\,\mathrm{ms}^{-1/3}\,\mathrm{K}^{-2}\) at 1.64\(\times 10^{20}\,{\text{cm}}^{-3}\) and 1.07\(\times10^{-19}\,\mathrm{W}^{5/3}\,\mathrm{ms}^{-1/3}\,\mathrm{K}^{-2}\) at 4.50\(\times{10^{20}}\mathrm{cm}^{-3}\), respectively. The results obtained in this work show that HfRhSb and HfRhAs are better potential thermoelectric materials than some known high-performance thermoelectric materials.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. B.P. Statistical Review of World Energy (2019)

  2. F. Heusler, Über magnetische Manganlegierungen. Verhandlungen der Deutschen Physikalischen Gesellschaft (in German) 12, 219 (1903)

    Google Scholar 

  3. S. Anand, K. Xia, I.V. Hegde, U. Aydemir, V. Kocevski, T. Zhu, C. Wolverton, G.J. Snyder, Energy Environ. Sci. 11(6), 1480–1488 (2018). https://doi.org/10.1039/c8ee00306h

    Article  Google Scholar 

  4. B.S. Vikram, C.K. Barman, A. Alam, J. Phys. Chem. C 123(12), 7074–7080 (2019). https://doi.org/10.1021/acs.jpcc.9b01737

    Article  Google Scholar 

  5. J. Yu, K. Xia, X. Zhao, T. Zhu, High performance p-type half-Heusler thermoelectric materials. J. Phys. D: Appl. Phys. 51(11), 113001 (2018). https://doi.org/10.1088/1361-6463/aaaa58

    Article  ADS  Google Scholar 

  6. J. He, T.M. Tritt, Science 357, k9997 (2017)

    Article  Google Scholar 

  7. L. Huang, Q. Zhang, B. Yuan, X. Lai, X. Yan, Z. Ren, Recent progress in half-Heusler thermoelectric materials. Mater. Res. Bull. 76, 107–112 (2016)

    Article  Google Scholar 

  8. J.B. Neaton, Nat Nanotechnol. 9(11), 876–877 (2014). https://doi.org/10.1038/nnano.2014.256

    Article  ADS  Google Scholar 

  9. S. Chen, Z. Ren, Mater. Today 16(10), 387–395 (2013). https://doi.org/10.1016/j.mattod.2013.09.015

    Article  Google Scholar 

  10. H.J. Goldsmid, Thermoelectric Refrigeration (Plenum Press, New York, 1964)

    Book  Google Scholar 

  11. H. Zhu, J. Mao, Y. Li, J. Sun, Y. Wang, Q. Zhu, Z. Ren, Nat. Commun. (2019). https://doi.org/10.1038/s41467-018-08223-5

    Article  Google Scholar 

  12. K. Kaur, EPL (Europhys. Lett.) 117(4), 47002 (2017). https://doi.org/10.1209/0295-5075/117/47002

    Article  ADS  Google Scholar 

  13. J. Yang, H. Li, T. Wu, W. Zhang, L. Chen, J. Yang, Adv. Funct. Mater. 18(19), 2880–2888 (2008). https://doi.org/10.1002/adfm.200701369

    Article  Google Scholar 

  14. K. Bartholomé, B. Balke, D. Zuckermann, M. Köhne, M. Müller, K. Tarantik, J. König, J. Electronic Mater. 43(6), 1775–1781 (2013). https://doi.org/10.1007/s11664-013-2863-x

    Article  ADS  Google Scholar 

  15. X.-Z. Li, W.-Y. Zhang, S. Valloppilly, D.J. Sellmyer, Sci. Rep. (2019). https://doi.org/10.1038/s41598-019-44179-2

    Article  Google Scholar 

  16. D. Bende, Y. Grin, F.R. Wagner, Chem. A Eur. J. 20(31), 9702–9708 (2014). https://doi.org/10.1002/chem.201400299

    Article  Google Scholar 

  17. R.L. Zhang, L. Damewood, C.Y. Fong, L.H. Yang, R.W. Peng, C. Felser, AIP Adv. 6(11), 115209 (2016). https://doi.org/10.1063/1.4967365

    Article  ADS  Google Scholar 

  18. G.J. Snyder, A.H. Snyder, Energy Environ. Sci. 10(11), 2280–2283 (2017). https://doi.org/10.1039/c7ee02007d

    Article  Google Scholar 

  19. L. Chen, X. Zeng, T.M. Tritt, S.J. Poon, J. Electronic Mater. 45(11), 5554–5560 (2016). https://doi.org/10.1007/s11664-016-4810-0

    Article  ADS  Google Scholar 

  20. H.S. Kim, W. Liu, G. Chen, C.-W. Chu, Z. Ren, Proc. Natl. Acad. Sci. 112(27), 8205–8210 (2015). https://doi.org/10.1073/pnas.1510231112

    Article  ADS  Google Scholar 

  21. G. Xing, J. Sun, Y. Li, X. Fan, W. Zheng, D.J. Singh, Phys. Rev. Mater. 1, 065405 (2017)

    Article  Google Scholar 

  22. M. Zahedifar, P. Kratzer, Phys. Rev. B 97, 035204 (2018)

    Article  ADS  Google Scholar 

  23. R. Ahmad, N. Mehmood, J. Supercond. Novel Magn. 31(5), 1577–1586 (2017)

    Article  Google Scholar 

  24. R. Ahmad, N. Mehmood, Mater. Res. Express 4, 106519 (2017)

    Article  ADS  Google Scholar 

  25. D. Xiao, Y. Yao, W. Feng, J. Wen, W. Zhu, X.-Q. Chen, G.M. Stocks, Z. Zhang, Phys. Rev. Lett. 105(9), 096404 (2010)

    Article  ADS  Google Scholar 

  26. V. Maurya, U. Paliwal, G. Sharma, K.B. Joshi, RSC Adv. 9(24), 13515–13526 (2019). https://doi.org/10.1039/c9ra01573f

    Article  Google Scholar 

  27. R. Li, X. Li, L. Xi, J. Yang, D.J. Singh, W. Zhang, A.C.S. Appl, Mater. Interfaces. (2019). https://doi.org/10.1021/acsami.9b01196

    Article  Google Scholar 

  28. A. Putatunda, G. Xing, J. Sun, Y. Li, D.J. Singh, J. Phys. Condens. Matter 30(22), 225501 (2018). https://doi.org/10.1088/1361-648x/aabf5b

    Article  ADS  Google Scholar 

  29. P. Giannozzi, S. Baroni, N. Bonini, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, G.L. Chiarotti, M. Cococcioni, I. Dabo, A.D. Corso, S. de Gironcoli, S. Fabris, G. Fratesi, R. Gebauer, U. Gerstmann, C. Gougoussis, A. Kokalj, M. Lazzeri, L. Martin-Samos, N. Marzari, F. Mauri, R. Mazzarello, S. Paolini, A. Pasquarello, L. Paulatto, C. Sbraccia, S. Scandolo, G. Sclauzero, A.P. Seitsonen, A. Smogunov, P. Umari, R.M. Wentzcovitch, J. Phys. Condens. Matter 21(39), 395502 (2009)

    Article  Google Scholar 

  30. S. Scandolo, P. Giannozzi, C. Cavazzoni, S. de Gironcoli, A. Pasquarello, S. Baroni, Z. Kristallogr. 220, 574–579 (2005)

    Google Scholar 

  31. P. Giannozzi, O. Andreussi, T. Brumme, O. Bunau, M. Buongiorno Nardelli, M. Calandra, R. Car, C. Cavazzoni, D. Ceresoli, M. Cococcioni, N. Colonna, I. Carnimeo, A. Dal Corso1, S. de Gironcoli, P. Delugas, R. A. DiStasio Jr, A. Ferretti, A. Floris, G. Fratesi, G. Fugallo, R. Gebauer, U. Gerstmann, F. Giustino, T. Gorni, J. Jia, M. Kawamura, H-Y. Ko, A. Kokalj, E. Küçükbenli, M. Lazzeri, M. Marsili, N. Marzari, F. Mauri, N. L. Nguyen, H-V. Nguyen, A. Otero-de-la-Roza, L. Paulatto, S. Poncé, D. Rocca, R. Sabatini, B. Santra, M. Schlipf, A. P. Seitsonen, A. Smogunov, I. Timrov, T. Thonhauser, P. Umari, N. Vast, X. Wu and S. Baroni, J. Phys. Condens. Matter 29, 465901 (2017)

  32. I.A.G. Ramirez, L.A.A. Varilla, J.A. Montoya, J. Phys. Conf. Ser. 1219, 012019 (2019)

    Article  Google Scholar 

  33. J.P. Perdew, S. Burke, M. Ernzerhof, Phys. Rev. Lett. 77, 3865–3868 (1996)

    Article  ADS  Google Scholar 

  34. H.J. Monkhorst, J.D. Pack, Phys. Rev. B 13, 5189 (1976)

    Article  ADS  Google Scholar 

  35. G.K.H. Madsen, D.J. Singh, Comput. Phys. Commun. 175, 67 (2006)

    Article  ADS  Google Scholar 

  36. Y. Li, L. Zhang, D.J. Singh, Phys. Rev. Mater. 1, 055001 (2017)

    Article  Google Scholar 

  37. M. Moradi, N. Taheri, M. Rostami, Phys. Lett. A (2018). https://doi.org/10.1016/j.physleta.2018.07.008

    Article  Google Scholar 

  38. M. Mokhtari, F. Dahmane, G. Benabdellah, L. Zekri, S. Benalia,and N. Zekri, Condens. Matter. Phys., 21(4), 43705:1–9 (2018)

  39. X. Wang, Z. Cheng, G. Liu, Materials 10(9), 1078 (2017)

    Article  ADS  Google Scholar 

  40. J. Ma, L. Feng, R. Guo, Y. Liao, R. Khenata, G. Liu, L. Wang, Materials 10(12), 1367 (2017)

    Article  ADS  Google Scholar 

  41. F. Casper, T. Graf, S. Chadov, B. Balke, C. Felser, Semicond. Sci. Technol. 27(6), 063001 (2012)

    Article  ADS  Google Scholar 

  42. T. Graf, C. Felser, S.S.P. Parkin, Prog. Solid State Chem. 39(1), 1–50 (2011)

    Article  Google Scholar 

  43. K. Kaur, R. Kumar, D.P. Rai, J. Alloys Compd. 763, 1018–1023 (2018). https://doi.org/10.1016/j.jallcom.2018.06.034

    Article  Google Scholar 

  44. C. Çoban, Y.Ö. Çiftçi, K. Çolakoğlu, Indian J. Phys. 90(11), 1233–1241 (2016)

    Article  ADS  Google Scholar 

  45. V. Vikram, J. Kangsabanik, E. Enamullah, A. Alam, Bismuth based half-Heusler alloys with giant thermoelectric figures of merit. J. Mater. Chem. A 5(13), 6131–6139 (2017)

    Article  Google Scholar 

  46. J. Ma, V.I. Hegde, K. Munira, Y. Xie, S. Keshavarz, D.T. Mildebrath, C. Wolverton, A.W. Ghosh, W.H. Butler, Phys. Rev. B 95(2), 024411 (2017)

    Article  ADS  Google Scholar 

  47. T. Fang, X. Zhao, T. Zhu, Materials 2018(11), 847 (2018)

    Article  ADS  Google Scholar 

  48. J. Yu, K. Xia, X. Zhao, T. Zhu, J. Phys. D: Appl. Phys. 51(11), 113001 (2018)

    Article  ADS  Google Scholar 

  49. C. Fu, T. Zhu, Y. Pei, H. Xie, H. Wang, G.J. Snyder, Y. Liu, Y. Liu, X. Zhao, Adv. Energy Mater. 4(18), 1400600 (2014)

    Article  Google Scholar 

  50. Z. Feng, Y. Fu, A. Putatunda, Y. Zhang, J.D. Singh, Phys. Rev. B (2019). https://doi.org/10.1103/physrevb.100.085202

    Article  Google Scholar 

  51. G. Xing, J. Sun, Y. Li, X. Fan, W. Zheng, D.J. Singh, J. Appl. Phys. 123(19), 195105 (2018). https://doi.org/10.1063/1.5025070

    Article  ADS  Google Scholar 

Download references

Funding

There was no funding for this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Muyiwa K. Bamgbose.

Ethics declarations

Conflict of interest

The author declares that there is no conflict of interest. The work was done by me.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bamgbose, M.K. Electronic structure and thermoelectric properties of HfRhZ(Z = As, Sb and Bi) half-Heusler compounds. Appl. Phys. A 126, 564 (2020). https://doi.org/10.1007/s00339-020-03691-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00339-020-03691-3

Keywords

Navigation