Skip to main content
Log in

Impact of silver nanoparticles on the growth, fatty acid profile, and antioxidative response of Nannochloropsis oculata

  • Original Article
  • Published:
Acta Physiologiae Plantarum Aims and scope Submit manuscript

Abstract

Key message

AgNPs caused significant toxicity and induced oxidative stress in the microalga N. oculata. Also, the interaction between AgNPs and algae led to cell membrane damage.

Abstract

Silver nanoparticles (AgNPs) have been broadly applied in several industrial sectors, and thus inevitably released into the aquatic environments. In the present study, the effect of various concentrations of AgNPs (up to 50 mg/L) on the microalga Nannochloropsis oculata (N. oculata) was investigated. The obtained results showed that half maximal effective concentration (EC50) of AgNPs for the microalga was 20.88 mg/L. Also, the different applied concentrations of AgNPs inhibited the cell growth as well as the photosynthetic machinery and stimulated the production of malondialdehyde (MDA) and hydrogen peroxide (H2O2). AgNP treatments dramatically enhanced the content of carotenoids in the treated algae, while they significantly reduced the quantity of phenolic compounds. Furthermore, AgNPs increased the enzymatic activity of catalase (CAT), ascorbate peroxidase (APX) and lactate dehydrogenase (LDH), while they considerably decreased the activity of polyphenol oxidase (PPO) compared to the control sample. Gas chromatography–mass spectrometry (GC–MS) examination demonstrated that after exposure of N. oculata cells to AgNPs, the amounts of saturated fatty acids (SFAs) and polyunsaturated fatty acids (PUFAs) were raised, while the levels of monounsaturated fatty acids (MUFAs) were lessened. The Fourier transform infrared spectroscopy (FTIR) results and the microscopic images revealed the interaction of AgNPs with the cells of N. oculata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Abdolsamad S, Younes G, Yaghoobi MM (2015) The effect of silver nanoparticles [Agnps] on chlorophyll a and β-carotene content [as two natural antioxidants] in the microalgae Chlorella vulgaris. Res Rev J Ecol Environ 3:41–45

    CAS  Google Scholar 

  • Alvarez-Puebla RA, Aroca RF (2009) Synthesis of silver nanoparticles with controllable surface charge and their application to surface-enhanced Raman scattering. Anal Chemic 81(6):2280–2285

    Article  CAS  Google Scholar 

  • Amal A, Hazani AA, Ibrahim MM, Shehata AI, El-Gaaly GA (2013) Ecotoxicity of Ag-nanoparticles on two microalgae, Chlorella vulgaris and Dunaliella tertiolecta. Arch Biol Sci 65(4):1447

    Article  Google Scholar 

  • Bai X, Song H, Lavoie M, Zhu K, Su Y, Ye H, Chen S, Fu Z, Qian H (2016) Proteomic analyses bring new insights into the effect of a dark stress on lipid biosynthesis in Phaeodactylum tricornutum. Sci Rep 6:25494

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behra R, Sigg L, Clift M, Herzog F, Minghetti M, Johnston B, Petri-Fink A, Rothen-Rutishauser B (2013) Bioavailability of silver nanoparticles and ions: from a chemical and biochemical perspective. J R Soc Interface 10:1–15

    Article  CAS  Google Scholar 

  • Biller P, Ross AB (2014) Pyrolysis GC-MS as a novel analysis technique to determine the biochemical composition of microalgae. Algal Res 2014:91–97

    Article  Google Scholar 

  • Blée E (2002) Impact of phyto-oxylipins in plant defense. Trends Plant Sci 7:315–321

    Article  PubMed  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgaram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–257

    Article  CAS  PubMed  Google Scholar 

  • Buzea C, Pacheco II, Robbie K (2007) Nanomaterials and nanoparticles: Sources and toxicity. Biointerphases 2:17–71

    Article  Google Scholar 

  • Comotto M, Casazza AA, Aliakbarian B, Caratto V, Farretti M, Perego P (2014) Influence of TiO2 nanoparticles on growth and phenolic compounds production in photosynthetic microorganisms. Sci World J 2014:1–9

    Article  Google Scholar 

  • Dash A, Singh AP, Chaudhary BR, Singh SK, Dash D (2012) Effect of silver nanoparticles on growth of eukaryotic green algae. Nano-Micro Lett 4(3):158–165

    Article  CAS  Google Scholar 

  • Dehindsa RS, Plumb-Dehindsa P, Torne TA (1981) Leaf senescence correlated with increased levels of membrane permeability and lipid peroxidation and decreased levels of superoxide dismutase and catalase. J Exp Bot 2:93–101

    Article  Google Scholar 

  • Demir V, Ates M, Arslan Z, Camas M, Celik F, Bogatu C, Can SS (2015) Influence of alpha and gamma-iron oxide nannoparticles on marine microalgae species. Bull Environ Contamin Toxicol 95(6):752–757

    Article  CAS  Google Scholar 

  • Demirbus A (2009) Production of biodiesel from algae oils. Eng Sour 31:163–168

    Article  CAS  Google Scholar 

  • Dolatabadi A, Sani B, Moaveni P (2015) Impact of nanosized titanium dioxide on agronomical and physiological characteristics of annual Medic (Medicago scutellata). Agron Res Moldavia 3(163):53–61

    Google Scholar 

  • Elumalai S, Sakthivel R (2013) GC-MS and FT-IR spectroscopic determination of fatty acid methyl ester of 16 freshwater microalgae, isolated from cement industries of Tamil Nadu. India J Algal Biomass Utln 4(1):50–69

    Google Scholar 

  • Fabrega J, Renshaw JC, Lead JR (2009) Interactions of silver nanoparticles with Pesudomonas putida biofilms. Environ Sci Technol 43(23):9004–9009

    Article  CAS  PubMed  Google Scholar 

  • Fabrication S (2009) Characterization of chitosan/nanosilver film and its potential antibacterial application. J Biomater Sci Polym Ed 20(14):2129–2144

    Article  CAS  Google Scholar 

  • Fazelian N, Movafeghi A, Yousefzadi M, Rahimzadeh M (2019) Cytotoxic impacts of CuO nanoparticles on the marine microalga Nannochloropsis oculata. Environ Sci Pollut Res 26:17499–17511

    Article  CAS  Google Scholar 

  • Fazelian N, Yousefzadi M, Movafeghi A (2020) Algal response to metal oxide nanoparticles: analysis of growth, protein content, and fatty acid composition. Bioenergy Res 1–11

  • FleischerO’Neill AMA, Ehwald R (1999) The pore size of non-graminaceous plant cell walls is rapidly decreased by borate ester cross-linking of the pectic polysaccharide rhamnogalacturonan II. Plant Physiol 121:829–838

    Article  Google Scholar 

  • Gill SS, Tuteja N (2010) Reactive oxygen species and antioxidant machinery in abiotic stress tolerance in crop plants. Plant Physiol Bioch 48:909–930

    Article  CAS  Google Scholar 

  • Guillard RL, Rymer JH (1962) Studies of marine planktonic diatoms. I. Cyclotella nana Hustedt and Detonula confervacea (Cleve). Can J Microbiol 8:229–239

    Article  CAS  PubMed  Google Scholar 

  • Griffiths MJ, Harison STL (2009) Lipid productivity as a key characteristic for choosing algal species for biodiesel production. J Appl Phycol 21:493–507

    Article  CAS  Google Scholar 

  • Hasheminasab H, Assad MT, Aliakbari A, Sahhafi SR (2012) Influence of Drought stress on oxidative damage and antioxidant defense systems in tolerant and susceptible wheat genotips. J Agricult Sci 8:20–30

    Google Scholar 

  • Haung J, Cheng J, Yi J (2016) Impact of silver nanoparticles on marine diatom Skeletonema costatum. J Appl Toxicol 36:1343–1354

    Article  CAS  Google Scholar 

  • Hazani AA, Ibrahim MM, Shehata AI, El-gaaly GA, Daoud M, Fouad D, Riwana H, Moubayed NMS (2013) Ecotoxicity of Ag-nanoparticles on two microalgae, Chlorella vulgaris and Dunaliella tertiolecta. Arch Biol Sci Belgrade 65(4):1447–1457

    Article  Google Scholar 

  • Heath RL, Packer L (1968) Photoperoxidation in isolated chloroplast, kinetics and stoichiometry of fatty acid peroxidation. Arch Biochem Biophys 125:189–198

    Article  CAS  PubMed  Google Scholar 

  • Jeffrey SW, Humphrey GF (1975) New spectrophotometric equations for determining chlorophylls a, b, c1 and c2 in higher plants, algae, and natural phytoplankton. Biochem Physiol Pflanzen 167:191–194

    Article  CAS  Google Scholar 

  • Jeong S, Yeo S, Yi S (2005) The effect of filler particle size on the antibacterial properties of compounded polymer/silver fibers. J Mater Sci 40(20):5407–5411

    Article  CAS  Google Scholar 

  • Johari A, Ghader Sarbazi Zh, Sourinejad I (2017) Toxicity effect of colloidal silver nanoparticles to marine microalgae, Nannochloropsis oculata. J Aquat Ecol 6(2):83–90

    Google Scholar 

  • Jovanović P, Žoric L, Stefanović I, Dźunić B, Bjordjević-jocić J, Radenković M, Jovanović M (2010) Lactate dehydrogenase and oxidative stress activity in primary open-angle glaucoma aqueous homour. Bosnian J Basic Med Sci 10(1):83–88

    Article  Google Scholar 

  • Jusoh M, Hong Loh S, Seng Chuah T, Aziz A, San Cha T (2015) Elucidating the role of jasmonic acid in oil accumulation, fatty acid composition and gene expression in Chlorella vulgaris (Trebouxiophyceae) during early stationary growth phase. Algal Res 9:14–20

    Article  Google Scholar 

  • Kang NK, Lee B, Choi GG, Moon M, Park MS, Lim J, Yang JW (2014) Enhancing lipid productivity of Chlorella vulgaris using oxidative stress by TiO2 nanoparticles. Korean J Chem Eng 31:861–867

    Article  CAS  Google Scholar 

  • Kar M, Mishra D (1976) Catalase, peroxidase, polyphenol oxidase activities during rice leaf senescence. Plant Physiol 57:315–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Klaine SJ, Alvarez PJ, Batley GE et al (2008) Nanomaterials in the environment: bahavior, fate, bioavailability, and effects. Environ Toxic Chem 27:1825–1851

    Article  CAS  Google Scholar 

  • Książyk M, Asztemborska M, Steborowski R, Bystrzejewska-Piotrowska G (2015) Toxic effect of silver and platinum nanoparticles toward the freshwater microalga Pseudokirchneriella subcapitata. Bull Environ Contom Toxicol 94:554–558

    Article  CAS  Google Scholar 

  • Levitan O, Dinamarca J, Zelzion E, Lun DS, Guerra LT, Kim MK, Kim J, Van Mooy BA, Bhattacharya D, Li Y, Han D, Sommerfeld M, Hu Q (2011) Photosynthetic carbon partitioning and lipid production in the oleaginous microalgae Pseudochlorococcum sp. (chlorophyceae) under nitrogen-limited condition. Bioresour Technol 102:123–129

    Article  CAS  Google Scholar 

  • Li Y, Han D, Sommerfeld M, Hu Q (2011) Photosynthetic carbon partitioning and lipid production in the oleoginus microalgae Pseudochlorococcum sp. (Chlorophyceae) under nitrogen-limited condition. Bioresour Technol 102:123–129

    Article  CAS  PubMed  Google Scholar 

  • Machu L, Misurcova L, Ambrozovas JV, Orsavova J, Micek J, Sochor J, Jurikova T (2015) Phenolic contents and antioxidant capacity in algal food products. Molecules 20:1118–1133

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Mayers JJ, Flynn KJ, Shields RJ (2013) Rapid determination of bulk microalgal biochemical composition by Fourier-transform infrared spectroscopy. Bioresour Technol 148:215–220

    Article  CAS  PubMed  Google Scholar 

  • Miller L, Berger T (1985) Bacteria identification by gas chromatography of whole cell fatty acids. In: Hewlett-Packard Co, Application Note. Hewlett-Packard Co., Avondale, PA, pp 228–41

  • Miura N, Shinohara Y (2009) Cytotoxic effect and apoptosis induction by silver nanoparticles in Hela Cells. Biochem Biophys Res Commun 390(3):733–737

    Article  CAS  PubMed  Google Scholar 

  • Mohammed Sadiq I, Dalai S, Chandrasekaran N, Mukherjee A (2011) Ecotoxicity study of titania (TiO2) NPs on two microalgae species: Scenedesmus sp. and Chlorella sp. Ecotoxic Environ Saf 74:1180–1187

    Article  CAS  Google Scholar 

  • Movafeghi A, Khataee A, Abedi M, Tarrahi R, Dadpour M, Vafaei F (2018) Effects of TiO2 nanoparticles on the aquatic plant Spirodela polyrrhiza: evaluation of growth parameters, pigment contents and antioxidant enzyme activities. J Environ Sci 64:130–138

    Article  CAS  Google Scholar 

  • Movafeghi A, Khataee A, Rezaee A, Kosari-Nasab M, Tarrahi R (2019) Toxicity of cadmium selenide nanoparticles on the green microalga Chlorella vulgaris: inducing antioxidative defense response. Environ Sci Pollut Res 26:36380–36387

    Article  CAS  Google Scholar 

  • Mutanda T, Ramesh D, Karthikeyan S, Kumari S, Anandraj A, Bux F (2011) Bioprospecting for hyper-lipid producing microalgae strains for sustainable biofuel production. Bioresour Technol 102:57–70

    Article  CAS  PubMed  Google Scholar 

  • Nakano Y, Asada K (1989) Hydrogen peroxide is scavenged by ascorbate specific peroxidase in spinach chloroplasts. Plant Cell Physiol 22:867–880

    Google Scholar 

  • OECD (1984) OECD guideline for testing of chemicals. Alga, growth inhibition test. OECD, Paris, pp 1–14

  • Oukarroum A, Bras S, Perreault F, Popovic R (2012) Inhibitory effects of silver nanoparticles in two green algae, Chlorella vulgaris and Dunaliella tertiolecta. Ecotoxicol Environ Saf 78:80–85

    Article  CAS  PubMed  Google Scholar 

  • Owen R, Handy R (2007) Formulating the problems for environmental risk assessment of nanomaterials. Environ Sci Technol 41:5582–5588

    Article  PubMed  Google Scholar 

  • Pádrová K, Lukavsky J, Nedbalova L, Cejkova A, Cajthaml T, Sigler K, Vitova M, Rezanka T (2015) Trace concentrations of iron nanoparticles cause overproduction of biomass and lipids during cultivation of cyanobacteria and microalgae. J Apply Phycol 27:1443–1451

    Article  CAS  Google Scholar 

  • Pandey S, Parvez S, Sayeed I, Haque R, Bin-Hafeez B, Raisuddin S (2003) Biomarkers of oxidative stress. Sci Total Environ 2003:105–115

    Article  CAS  Google Scholar 

  • Perreault F, Oukarroum A, Melegari SP, Matias WG, Popovic R (2012) Polymer coating of copper oxide nanoparticles increases nanoparticles uptake and toxicity in the green alga Chlamydomonas reinhardtii. Chemosphere 87:1388–1394

    Article  CAS  PubMed  Google Scholar 

  • Phukan MM, Chuia RS, Konwar BK, Kataki R (2011) Microalgae chlorella as a potential bio-energy feedstock. Appl Energy 88:3307–3312

    Article  CAS  Google Scholar 

  • Pulz O, Gross W (2004) Valuable products from biotechnology of microalgae. Appl Microb Biotech 65:635–648

    Article  CAS  Google Scholar 

  • Qian H, Peng X, Han X, Ren J, Sun L, Fu Z (2013) Comparison of the toxicity of silver nanoparticles and silver ions on the growth of terrestrial plant model Arabidopsis thaliana. J Environ Sci 25:1947–1956

    Article  CAS  Google Scholar 

  • Rastogi A, Zivcak M, Sytar O, Kalani HM, He X, Mbarki S, Brestic M (2017) Impact of metal and metal oxide nanoparticles on plant: a critical review. Front Chem 5:1–16

    Article  CAS  Google Scholar 

  • Rastogi A, Zivcak M, Tripath DK, Yadav S, Kalaji HM, Brestic M (2019) Phytotoxic effect of silver nanoparticles in Triticum aestivum: Improper regulation of photosystem I activity as the reason for oxidative damage in the chloroplast. Photosynthetica 57:209–216

    Article  CAS  Google Scholar 

  • Roy R, Parashar A, Bhuvaneshwari M, Chandrasekaran N (2016) Differential effects of P25 TiO2 nanoparticles on freshwater green microalgae: Chlorella and Scenedesmus species. Aquat Toxicol 176:161–171

    Article  CAS  PubMed  Google Scholar 

  • Ruiz JM, Rivero RM, Lopez-Cantarero I, Romero L (2003) Role of Ca2+ in the metabolism of phenolic compounds in tobacco leaves (Nicotiana tabacum L.). J Plant Growth Reg 41:173–177

    Article  CAS  Google Scholar 

  • Sarvajeet SG, Narendera T (2010) Reactive oxygens species and antioxidant machinery in a biotic stress tolerance in crop plants. Annu Rev Plant Physiol Biochem 3:1–22

    Google Scholar 

  • Schiavo S, Duroudier N, Bilbao E, Mikolaczyk M, Schafer J, Cajaraville MP, Manzo S (2017) Effects of PVP/PEI coated and uncoated silver NPs and PVP/PEI coating agent on three species of marine microalgae. Sci Total Environ 2017:45–53

    Article  CAS  Google Scholar 

  • Sharma VK, Yngard RA, Lin Y (2009) Silver nanoparticles: green synthesis and their antimicrobial activities. Adv Colloid Interface Sci 145:83–96

    Article  CAS  PubMed  Google Scholar 

  • Singleton VL, Orthofer R, Lamuela-Raventos RM (1999) Analysis of total phenols and other oxidation substrates and antioxidants by means of Folin-Ciocalteu reagent. Methods Enzymol 299:152–178

    Article  CAS  Google Scholar 

  • Stehfest K, Toepel J, Wilhelm C (2005) The application of micro FTIR spectroscopy to analyze nutrient stress-related changes in biomass composition of phytoplankton algae. Plant Physiol Biochem 43(7):717–726

    Article  CAS  PubMed  Google Scholar 

  • Sukarni S, Hamidi N, Yanuhar U, Wardana ING (2014) Potential and properties of marine microalgae Nannochloropsis oculata as biomass fuel feedstock. Int J Energy and Environ Eng 5:279–290

    Article  CAS  Google Scholar 

  • Suman TY, Radhika Rajasree SR, Kirubagaran R (2015) Evalution of zinc oxide nanoparticles toxicity on marine algae Chlorella vulgaris through flow cytometric, cytotoxicity and oxidative stress analysis. Ecotoxic Environ Saf 113:23–30

    Article  CAS  Google Scholar 

  • Tarrahi R, Movafeghi A, Khataee A, Rezanejad F, Gohari G (2019) Evaluating the toxic impacts of cadmium selenide nanoparticles on the aquatic plant Lemna minor. Molecules 24(3):410–425

    Article  PubMed Central  CAS  Google Scholar 

  • Thypiapong P, Stout MJ, Attajarusit J (2007) Functional analysis of polyphenol oxidases by antisense/sense technology. Molecules 12:1569–1595

    Article  Google Scholar 

  • Velikova V, Yordanov I, Edreva A (2000) Oxidative stress and some antioxidant systems in acid rain-treated bean plants. Plant Sci 151:59–66

    Article  CAS  Google Scholar 

  • Wang Y, Zhu X, Lao Y, Lu X, Tao Y, Huang B, Wang J, Zhou J, Cai Z (2016) TiO2 nanoparticles in the marine environment: physical effects responsible for the toxicity on algae Phaeodactylum tricornutum. Sci Total Environ 2016:1–9

    Article  CAS  Google Scholar 

  • Xu J, Fan X, Li X, Liu G, Zhang Z, Zhu Y, Fu Z, Qian H (2017) Effect of salicylic acid on fatty acid accumulation in Phaeodactylum tricornutum during stationary growth phase. J Appl Phycol 29:2801–2810

    Article  CAS  Google Scholar 

  • Zaidi S, Maurya C, Shankhadarwar S, Pius J (2015) Silver nanoparticles-Chlorella interaction: effect on metabolites. J Biosci Discov 6(1-I):62–65

    Google Scholar 

  • Zhang H, Ji Z, Xia T, Meng H, Low-Kam CR, Liu S, Pokhrel S, Lin X, Wang YP, Liao M, Wang L, Li L, Rallo R, Zhang XJ, Zhang TW, Manzoor R (2017) Toxicity of silver nanoparticles to marine microalgae Chlorella vulgaris. Int Conf Energy Power Environ Eng 2017:433–437

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Contributions

Author contribution

Study conception and design: MY. Acquisition of data: NF. Analysis and interpretation of data: NF, AM, MY, MR, and MZ. Drafting of manuscript: NF, and MY. Critical revision: NF, AM, MY, MR, and MZ.

Corresponding authors

Correspondence to Ali Movafeghi or Morteza Yousefzadi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

This article does not contain any studies with animals performed by any of the authors.

Additional information

Communicated by O. Ferrarese-Filho.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fazelian, N., Movafeghi, A., Yousefzadi, M. et al. Impact of silver nanoparticles on the growth, fatty acid profile, and antioxidative response of Nannochloropsis oculata. Acta Physiol Plant 42, 126 (2020). https://doi.org/10.1007/s11738-020-03101-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s11738-020-03101-4

Keywords

Navigation