Skip to main content
Log in

One-Pot Multicomponent Synthesis and Anticancer Activity of 1,3-Cyclopentathiazine and Pyrimidothiazine Derivatives

  • Published:
Russian Journal of Organic Chemistry Aims and scope Submit manuscript

Abstract

Novel 1,3-cyclopentathiazine and pyrimidothiazine derivatives were synthesized starting from 7-benzyl-4-phenylcyclopenta[d][1,3]thiazin-2-amine (CTA) prepared by a one-pot multicomponent reaction of cyclopentanone, benzaldehyde, and thiourea. Cyclocondensation of CTA with benzylidenemalononitrile gave a pyrimidothiazine. Oxidation of cyclopentathiazine with hydrogen peroxide afforded the corresponding epoxide, while its alkylation with ethyl iodide yielded an N-ethyl derivative. Cyclopentylidenemalononitrile was reacted with formaline and carbon disulfide to obtain pyridine-4-carbonitrile and thiapyrane, respectively, and the reactions of cyclopentylidenemalononitrile with aryl isocyanate and aryl isothiocyanate gave condensed diimino-substituted cyclopentanaphthyridine-1,6-dione and dithiaacenaphthylene-3,8-diylidedibenzamide, respectively. Heating cyclopentanone with benzoyl isothiocyanate and benzoyl chloride produced a sulfide derivative and an enolic dione, respectively. The structures of the newly synthesized compounds were confirmed by spectral analysis, and some products were screened for anticancer activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Scheme
Scheme
Scheme
Scheme

Similar content being viewed by others

REFERENCES

  1. Thanusu, J., Kanagarajan, V., and Gopalakrishnan, M., J. Enz. Inhibit. Med. Chem., 2010, vol. 25, p. 756. https://doi.org/10.3109/14756360903389898

    Article  CAS  Google Scholar 

  2. Kai, H., Morioka, Y., Koriyama, Y., Okamoto, K., Hasegawa, Y., Hattori, M., Koike, K., Chiba, H., Shinohara, S., Iwamoto, Y., Takahashi, K., and Tanimoto, N., Bioorg. Med. Chem. Lett., 2008, vol. 18, p. 6444. https://doi.org/10.1016/j.bmcl.2008.10.070

    Article  CAS  PubMed  Google Scholar 

  3. Koketsu, M., Tanaka, K., Takenaka, Y., Kwong, C.D., and Ishihara, H., Eur. J. Pharm. Sci., 2002, vol. 15, p. 307. https://doi.org/10.1016/S0928-0987(02)00014-3

    Article  CAS  PubMed  Google Scholar 

  4. Banerji, B. and Sumit Kumar, P., J. Chem. Biol., 2015, vol. 8, p. 73. https://doi.org/10.1186/s40064-015-1452-2

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Shalki, C., Om, S., and Pankaj, K.S., Mini-Rev. Med.Chem., 2018, vol. 18, p. 1. https://doi.org/10.2174/1389557518666180416150552

    Article  CAS  Google Scholar 

  6. El-Subbagh, H.I., Abadi, A., Al-Khawad, I.E., and Alpashood, K.A., Arch. Pharm., 1999, vol. 332, p. 137. https://doi.org/10.1002/(SICI)1521-4184(19994)332:4<137::AID-ARDP137>3.0.CO;2-0

    Article  CAS  Google Scholar 

  7. Malinka, W., Kaczmarz, M., Filipek, B., Sepa, J., and Gold, B., Farmaco II, 2002, vol. 57, p. 737. https://doi.org/10.1016/S0014-827X(02)01267-3

    Article  CAS  Google Scholar 

  8. Ishak, E.A., Dehbi, O., Sabuni, I., Abdelzaher, H.M.A., and Riadi, Y., J. Mater. Environ. Sci., 2017, vol. 8, p. 3524.

    CAS  Google Scholar 

  9. Vinoda, B.M., Yadav, D.B., Vinuth, M., Kenchappa, R., Sandeep, T., and Sameer, P., Inventi Rapid Med. Chem., 2016, vol. 2, p. 1.

    Google Scholar 

  10. Rashad, A.E., Shamroukh, A.H., Yousif, N.M., Salama, M.A., and Ali, H.S., Archiv der Pharm., 2012, vol. 345, p. 729. https://doi.org/10.1002/ardp.201200119

    Article  CAS  Google Scholar 

  11. Zhang, X., Glunz, P.W., Jiang, W., Schmitt, A., and Newman, M., Bioorg. Med. Chem. Lett., 2013, vol. 23, p. 1604. https://doi.org/10.1016/j.bmcl.2013.01.094

    Article  CAS  PubMed  Google Scholar 

  12. Abu-Zaid, H.I., Mahran, S.M., Badria, M.A., Al-Obaid, F.A., and El-Subbagh, A.M., J. Med. Chem., 2000, vol. 43, p. 2915. https://doi.org/10.1021/jm000038m

    Article  CAS  PubMed  Google Scholar 

  13. Haggam, R.A., Assy, M.G., Sherif, M.H., and Galahom, M.M., Res. Chem. Intermed., 2017, vol. 43, p. 6299. https://doi.org/10.1007/s11164-017-2990-8

    Article  CAS  Google Scholar 

  14. Haggam, R.A., Assy, M.G., Sherif, M.H., and Galahom, M.M., Eur. J. Chem., 2018, vol. 9, p. 99. https://doi.org/10.5155/eurjchem.9.2.99-106.1701

    Article  CAS  Google Scholar 

  15. Haggam, R.A., Assy, M.G., Mohamed, E.K., and Mohamed, A.S., J. Heterocycl. Chem., 2019, vol. 57, p. 1. https://doi.org/10.1002/jhet.3830

    Article  CAS  Google Scholar 

  16. Multicomponent Reactions, Science of Synthesis Series, Müller, T.J.J., Ed., Georg Thieme Verlag KG: Stuttgart, 2014.

  17. Sunderhaus, J.D. and Martin, S.F., Chem. Eur. J., 2009, vol. 15, p. 1300. https://doi.org/10.1002/chem.200802140

    Article  CAS  PubMed  Google Scholar 

  18. Lavilla, N. and Isambert, R., Chem. Eur. J., 2008, vol. 14, p. 8444. https://doi.org/10.1002/chem.200800473

    Article  CAS  PubMed  Google Scholar 

  19. Orru, R.V.A. and Greef, M., Synthesis, 2003, p. 1471. https://doi.org/10.1055/s-2003-40507

  20. Bonne, D., Coquerel, Y., Constantieux, T., and Rodriguez, J., Tetrahedron Asymmetry, 2010, vol. 21, p. 1085. https://doi.org/10.1016/j.tetasy.2010.04.045

    Article  CAS  Google Scholar 

  21. Dömling, A. and Ugi, I., Angew. Chem. Int. Ed., 2000, vol. 39, p. 3168. https://doi.org/10.1002/1521-3773(20000915)39:18<3168::AID-ANIE3168>3.0.CO;2-U

    Article  Google Scholar 

  22. Ramon, D.J. and Yus, M.A., Angew. Chem., 2005, vol. 117, p. 1628. https://doi.org/10.1002/ange.200460548

    Article  Google Scholar 

  23. Constsntieux, T., Simon, C., and Rodiguez, J.J., J. Org.Chem., 2004, p. 4957. https://doi.org/10.1002/ejoc.200400511

  24. Hall, D.G. and Lesanko, A., Curr. Opin. Chem. Biol., 2005, vol. 9, p. 266. https://doi.org/10.1071/CH11358

    Article  CAS  PubMed  Google Scholar 

  25. Wagnat, W.W. and Eman, M.S., J. Chem., 2013, p. 1. https://doi.org/10.1155/2013/427158

  26. Ahmed, B. and Rappoport, Z., Org. Biomol. Chem., 2008, vol. 6, p. 1071. https://doi.org/10.1039/B717556F

    Article  Google Scholar 

  27. Skehan, P., Storeng, R., Scudiero, D., Monks, A., McMahon, J., Vistica, D., Warren, J.T., Bokesch, H., Kenny, S., and Boyd, M.R., J. Nat. Cancer Inst., 1990, vol. 82, p. 1107. https://doi.org/10.1093/jnci/82.13.1107

    Article  CAS  PubMed  Google Scholar 

  28. Monks, A., Scudiero, D., Skehan, P., Shoemaker, R., Paull, K., Vistica, D., Hose, C., Langley, J., Cronise, P., Vaigro-Wolff, A., Gray-Goodrich, M., Campbell, H., Mayo, J., and Boyd, M., J. Nat. Cancer Inst., 1991, vol. 83, p. 757. https://doi.org/10.1093/jnci/83.11.757

    Article  CAS  PubMed  Google Scholar 

Download references

ACKNOWLEDGMENTS

The authors are grateful to Dr. Zainab Fathy Elsawah, Pharmacology Department, Faculty of Science, Zagazig University for performing and interpreting the biological activity testing results. The authors are also grateful to all associated personnel in any reference, who contributed in the present research.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. A. Haggam.

Ethics declarations

The authors declare no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haggam, R.A., Moustafa, H.Y., Assy, M.G. et al. One-Pot Multicomponent Synthesis and Anticancer Activity of 1,3-Cyclopentathiazine and Pyrimidothiazine Derivatives. Russ J Org Chem 56, 916–923 (2020). https://doi.org/10.1134/S1070428020050279

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070428020050279

Keywords:

Navigation