Skip to main content
Log in

Synthesis of Zinc-Doped Lithium Tantalate Charge in the Technology of Novel Crystalline Functional Materials

  • Inorganic Synthesis and Industrial Inorganic Chemistry
  • Published:
Russian Journal of Applied Chemistry Aims and scope Submit manuscript

Abstract

A procedure was developed for preparing lithium tantalate (LiTaO3) charge homogeneously doped with lithium from high-purity tantalum-containing solutions, based on heat treatment of lithium-, tantalum-, and zinc-containing citrate precursors. The thermolysis products were studied by thermal analysis, X-ray diffraction, and IR absorption spectroscopy. The optimum synthesis conditions and zinc concentration to obtain a single-phase LiTaO3:Zn charge were determined. Comparison with the properties of an isomorphic compound LiNbO3 (LiNbO3:Zn) demonstrated the advantages of the synthesis procedure developed and practically important properties such as high optical stability of LiTaO3:Zn crystals and low coercive field, acquired by lithium tantalate upon doping with zinc. Samples of LiTaO3:Zn charge of various compositions, suitable both for the technology of LiTaO3:Zn crystals and for the preparation of piezoelectric ceramics based on zinc-doped lithium tantalate, were prepared by the developed procedure.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2.
Fig. 3.
Fig. 4.
Fig. 5.

Similar content being viewed by others

REFERENCES

  1. Lines, M.E. and Glass, A.M., Principles and Applications of Ferroelectrics and Related Materials, Oxford: Clarendon, 1977. https://doi.org/10.1007/s10762-017-0393-y

    Book  Google Scholar 

  2. Kuz’minov, Yu.S., Niobat i tantalat litiya – materialy dlya nelineinoi optiki (Lithium Niobate and Tantalate as Materials for Nonlinear Optics), Moscow: Nauka, 1975.

    Google Scholar 

  3. Kuz’minov, Yu.S., Elektroopticheskii i nelineino-opticheskii kristall niobata litiya (Electrooptical and Nonlinear-Optical Lithium Niobate Crystal), Moscow: Nauka, 1987.

    Google Scholar 

  4. Volk, T. and Wohleke, M., Lithium Niobate. Defects, Photorefraction and Ferroelectric Switching, Berlin: Springer, 2008. https://doi.org/10.1007/978-3-540-70766-0

    Book  Google Scholar 

  5. Palatnikov, M.N., Sidorov, N.V., Manukovskaya, D.V., Makarova, O.V., Aleshina, L.A., and Kadetova, A.V., J. Am. Ceram. Soc., 2017, vol. 100, no. 8, pp. 3703–3711. https://doi.org/10.1111/jace.14851

    Article  CAS  Google Scholar 

  6. Buzady, A., Unferdorben, M., Toth, G., János Hebling, Ja., Hajdara, I., Kovács, L., and Pálfalvi, L., J. Infrared Millimeter Terahertz Waves, 2017, vol. 38, no. 8, pp. 963–967. https://doi.org/10.1007/s10762-017-0393-y

    Article  CAS  Google Scholar 

  7. Lee, Kyu-S., Ko, Do-Kye, and Yu, N.E., Jpn. J. Appl. Phys., 2017, vol. 56, no. 4, article 040303. https://doi.org/10.7567/JJAP.56.040303

    Article  Google Scholar 

  8. Zhong, X., Yin, M., and Lian, M., J. Optoelectron. Adv. Mater., 2016, vol. 18, nos. 7–8, pp. 613–617.

    CAS  Google Scholar 

  9. Palatnikov, M.N., Birukova, I.V., Masloboeva, S.M., Makarova, O.V., Manukovskaya, D.V., and Sidorov, N.V., J. Cryst. Growth, 2014, vol. 386, pp. 113–118. https://doi.org/10.1016/j.jcrysgro.2013.09.038

    Article  CAS  Google Scholar 

  10. Masloboeva, S.M., Palatnikov, M.N., Arutyunyan, L.G., and Ivanenko, D.V., Izv. Sankt-Peterb. Gos. Tekhnol. Inst. (Tekh. Univ.), 2017, no. 38 (64), pp. 34–43. https://doi.org/10.15217/issn1998984-9.2017.38

    Article  Google Scholar 

  11. Masloboeva, S.M., Sidorov, N.V., Palatnikov, M.N., Arutyunyan, L.G., and Chufyrev, P.G., Russ. J. Inorg. Chem., 2011, vol. 56, no. 8, pp. 1194–1198. https://doi.org/10.1134/S0036023611080183

    Article  CAS  Google Scholar 

  12. Palatnikov, M.N., Biryukova, I.V., Masloboeva, S.M., Makarova, O.V., Kravchenko, O.E., Yanichev, A.A., and Sidorov, N.V., Inorg. Mater., 2013, vol. 49, no. 7, pp. 715–720. https://doi.org/10.1134/S0020168513060083

    Article  CAS  Google Scholar 

  13. Masloboeva, S.M., Elizarova, I.R., Kadyrova, G.I., and Arutyunyan, L.G., Inorg. Mater., 2014, vol. 50, no. 8, pp. 803–809. https://doi.org/10.1134/S0020168514080135

    Article  CAS  Google Scholar 

  14. Masloboeva, S.M., Arutyunyan, L.G., and Palatnikov, M.N., Russ. J. Inorg. Chem., 2018, vol. 63, no. 4, pp. 449–454. https://doi.org/10.1134/S0036023618040137

    Article  CAS  Google Scholar 

  15. Palatnikov, M.N., Sidorov, N.V., and Kalinnikov, V.T., Segnetoelektricheskie tverdye rastvory na osnove oksidnykh soedinenii niobiya i tantala: sintez, issledovanie strukturnogo uporyadocheniya i fizicheskikh kharakteristik (Ferroelectric Solid Solutions Based on Niobium and Tantalum Oxide Compounds: Synthesis and Study of Structural Ordering and Physical Characteristics), St. Petersburg: Nauka, 2001, pp. 29–54.

    Google Scholar 

  16. Masloboeva, S.M., Elizarova, I.R., Arutyunyan, L.G., and Kalinnikov, V.T., Dokl. Phys. Chem., 2015, vol. 460, no. 2, pp. 37–41. https://doi.org/10.1134/S0012501615020037

    Article  CAS  Google Scholar 

  17. Masloboeva, S.M., Duboshin, G.N., and Arutyunyan, L.G., Vestn. Mosk. Gos. Tekh. Univ., 2009, vol. 12, no. 2, pp. 279–285.

    Google Scholar 

  18. Yatsenko, A.V., Pritulenko, A.S., eVdokimov, S.V., Palatnikov, M.N., and Sidorov, N.V., Phys. Solid State, 2015, vol. 57, no. 8, pp. 1547–1550. https://doi.org/10.1134/S1063783415050339

    Article  CAS  Google Scholar 

  19. Farbun, A., Romanova, I.V., Terikovskaya, T.E., Dzanashvili, D.I., and Kirillov, S.A., Russ. J. Appl. Chem., 2007, vol. 80, no. 11, pp. 1798–1803. https://doi.org/10.1134/S1070427207110031

    Article  CAS  Google Scholar 

  20. Werde, K.V., Mondelaers, D., Vanhoyland, G., Nelis, D., Van Bael, M.K., Mullens, J., Van Poucke, L.C., Van der Veken, B., and Desseyn, H.O., J. Mater. Sci., 2002, vol. 37, no. 1, pp. 81–88. https://doi.org/10.1023/A:1013141723764

    Article  Google Scholar 

  21. Kharitonov, Yu.Ya. and Alikhanova, Z.M., Radiokhimiya, 1964, vol. 6, no. 6, pp. 702–704.

    CAS  Google Scholar 

  22. Niitsu, G.T., Nagata, H., and Rodrigues, A.C.M., J. Appl. Phys., 2004, vol. 95, pp. 3116–3123. https://doi.org/10.1063/1.1647263

    Article  CAS  Google Scholar 

  23. Huixian, F., Jinke, W., Huafu, W., Shiying, H., and Yunxia, X., J. Phys. Chem. Solids, 1990, vol. 51, no. 5, pp. 397–400. https://doi.org/10.1016/0022-3697(90)90173-D

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. M. Masloboeva.

Ethics declarations

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Palatnikov, M.N., Masloboeva, S.M. & Arutyunyan, L.G. Synthesis of Zinc-Doped Lithium Tantalate Charge in the Technology of Novel Crystalline Functional Materials. Russ J Appl Chem 93, 645–653 (2020). https://doi.org/10.1134/S1070427220050043

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1070427220050043

Keywords:

Navigation