Skip to main content
Log in

Candidatus Liberibacter asiaticus: virulence traits and control strategies

  • Review
  • Published:
Tropical Plant Pathology Aims and scope Submit manuscript

Abstract

Citrus Huanglongbing (HLB) is currently the most devastating citrus disease worldwide. HLB, first identified in Asia, and its insect vector, the Asian citrus psyllid (ACP), are quickly spreading in citrus-producing areas in South America and North America. The main challenges for HLB control include the phloem-limited biology of Candidatus Liberibacter spp., the causal agent of HLB, which shields the pathogen from treatments, difficulty in controlling and containing the psyllid vectors, and lack of citrus varieties with resistance against HLB and ACP. This review is not intended to be comprehensive; instead, we focus on the virulence factors of Ca. L. asiaticus and the control approaches against HLB and ACP to complement other papers covering different aspects of HLB pathosystems of this issue.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Akula N, Trivedi P, Han FQ, Wang N (2012) Identification of small molecule inhibitors against SecA of Candidatus Liberibacter asiaticus by structure based design. European Journal of Medicinal Chemistry 54:919–924

    CAS  PubMed  Google Scholar 

  • An C, Mou Z (2011) Salicylic acid and its function in plant immunity. Journal of Integrative Plant Biology 53:412–428

    CAS  PubMed  Google Scholar 

  • Andrade M, Wang N (2019) The tad pilus apparatus of ‘Candidatus Liberibacter asiaticus’ and its regulation by VisNR. Molecular Plant-Microbe Interactions 32:1175–1187

    CAS  PubMed  Google Scholar 

  • Andrade MO, Pang Z, Achor DS, Wang H, Yao T, Singer B, Wang N (2019) The flagella of Candidatus Liberibacter asiaticus and its movement in planta. Molecular Plant Pathology 21:109–123

    PubMed  PubMed Central  Google Scholar 

  • Avidan O, Petrenko M, Becker R, Beck S, Linscheid M, Pietrokovski S, Jurkevitch E (2017) Identification and characterization of differentially-regulated type IVb pilin genes necessary for predation in obligate bacterial predators. Scientific Reports 7:1013

    PubMed  PubMed Central  Google Scholar 

  • Barnett MJ, Solow-Cordero DE, Long SR (2019) A high-throughput system to identify inhibitors of Candidatus Liberibacter asiaticus transcription regulators. Proceedings of the National Academy of Sciences of the United States of America 116:18009–18014

    CAS  PubMed  PubMed Central  Google Scholar 

  • Beloti VH, Alves GR, Coletta-Filho HD, Yamamoto PT (2018) The Asian citrus psyllid host Murraya koenigii is immune to citrus Huanglongbing pathogen ‘Candidatus Liberibacter asiaticus’. Phytopathology 108:1089–1094

    CAS  PubMed  Google Scholar 

  • Blaustein RA, Lorca GL, Teplitski M (2018) Challenges for managing Candidatus Liberibacter spp. (Huanglongbing disease pathogen): current control measures and future directions. Phytopathology 108:424–435

    PubMed  Google Scholar 

  • Bové JM (2006) Huanglongbing: a destructive, newly-emerging, century-old disease of citrus. Journal of Plant Pathology 88:7–37

    Google Scholar 

  • Canales E, Coll Y, Hernandez I, Portieles R, Rodriguez Garcia M, Lopez Y, Aranguren M, Alonso E, Delgado R, Luis M, Batista L, Paredes C, Rodriguez M, Pujol M, Ochagavia ME, Falcon V, Terauchi R, Matsumura H, Ayra-Pardo C, Llauger R, Perez Mdel C, Nunez M, Borrusch MS, Walton JD, Silva Y, Pimentel E, Borroto C, Borras-Hidalgo O (2016) ‘Candidatus Liberibacter asiaticus’, causal agent of citrus Huanglongbing, is reduced by treatment with brassinosteroids. PLoS One 11:e0146223

    PubMed  PubMed Central  Google Scholar 

  • Chatnaparat T, Prathuangwong S, Lindow SE (2016) Global pattern of gene expression of Xanthomonas axonopodis pv. glycines within soybean leaves. Molecular Plant-Microbe Interactions 29:508–522

    CAS  PubMed  Google Scholar 

  • Chen X, Triana M, Stansly PA (2017) Optimizing production of Tamarixia radiata (Hymenoptera: Eulophidae), a parasitoid of the citrus greening disease vector Diaphorina citri (Hemiptera: Psylloidea). Biological Control 105:13–18

    Google Scholar 

  • Clark K, Franco JY, Schwizer S, Pang Z, Hawara E, Liebrand TWH, Pagliaccia D, Zeng L, Gurung FB, Wang P, Shi J, Wang Y, Ancona V, van der Hoorn RAL, Wang N, Coaker G, Ma W (2018) An effector from the Huanglongbing-associated pathogen targets citrus proteases. Nature Communications 9:1718

    PubMed  PubMed Central  Google Scholar 

  • Costa TR, Felisberto-Rodrigues C, Meir A, Prevost MS, Redzej A, Trokter M, Waksman G (2015) Secretion systems in gram-negative bacteria: structural and mechanistic insights. Nature Reviews. Microbiology 13:343–359

    CAS  PubMed  Google Scholar 

  • Croxton SD, Stansly PA (2014) Metalized polyethylene mulch to repel Asian citrus psyllid, slow spread of Huanglongbing and improve growth of new citrus plantings. Pest Management Science 70:318–323

    CAS  PubMed  Google Scholar 

  • da Graca JV, Douhan GW, Halbert SE, Keremane ML, Lee RF, Vidalakis G, Zhao H (2016) Huanglongbing: an overview of a complex pathosystem ravaging the world’s citrus. Journal of Integrative Plant Biology 58:373–387

    PubMed  Google Scholar 

  • Dai Z, Wu F, Zheng Z, Yokomi RK, Kumagai L, Cai W, Rascoe J, Polek M, Deng X, Chen J (2018) Prophage diversity of “Candidatus Liberibacter asiaticus” strains in California. Phytopathology 109:551–559

    Google Scholar 

  • Deakin WJ, Parker VE, Wright EL, Ashcroft KJ, Loake GJ, Shaw CH (1999) Agrobacterium tumefaciens possesses a fourth flagellin gene located in a large gene cluster concerned with flagellar structure, assembly and motility. Microbiology 145:1397–1407

    CAS  PubMed  Google Scholar 

  • Delepelaire P (2004) Type I secretion in gram-negative bacteria. Biochimica et Biophysica Acta 1694:149–161

    CAS  PubMed  Google Scholar 

  • Dominguez-Mirazo M, Jin R, Weitz JS (2019) Functional and comparative genomic analysis of integrated prophage-like sequences in “Candidatus Liberibacter asiaticus”. mSphere 4

  • Duan Y, Zhou L, Hall DG, Li W, Doddapaneni H, Lin H, Liu L, Vahling CM, Gabriel DW, Williams KP, Dickerman A, Sun Y, Gottwald T (2009) Complete genome sequence of citrus Huanglongbing bacterium, “Candidatus Liberibacter asiaticus” obtained through metagenomics. Molecular Plant-Microbe Interactions 22:1011–1020

    CAS  PubMed  Google Scholar 

  • Ehsani R, Dewdney M, Johnson E (2016) Controlling HLB with thermotherapy: what have we learned so far? Citrus Industry Magazine 9:26–28. http://citrusindustry.net/2016/10/21/controlling-hlb-withthermotherapy-what-have-we-learned-so-far/

  • Fang X, Ouyang G, Lu H, Guo M, Wu W (2018) Ecological control of citrus pests primarily using predatory mites and the bio-rational pesticide matrine. International Journal of Pest Management 64:262–270

    CAS  Google Scholar 

  • Fernandez-Luna MT, Kumar P, Hall DG, Mitchell AD, Blackburn MB, Bonning BC (2019) Toxicity of Bacillus thuringiensis-derived pesticidal proteins Cry1Ab and Cry1Ba against Asian citrus psyllid, Diaphorina citri (Hemiptera). Toxins (Basel) 11

  • Galdeano DM, Breton MC, Lopes JR, Falk BW, Machado MA (2017) Oral delivery of double-stranded RNAs induces mortality in nymphs and adults of the Asian citrus psyllid, Diaphorina citri. PLoS One 12:e0171847

    PubMed  PubMed Central  Google Scholar 

  • Gardner CL, Pagliai FA, Pan L, Bojilova L, Torino MI, Lorca GL, Gonzalez CF (2016) Drug repurposing: tolfenamic acid inactivates PrbP, a transcriptional accessory protein in Liberibacter asiaticus. Frontiers in Microbiology 7:1630

    PubMed  PubMed Central  Google Scholar 

  • Ghosh DK, Kokane S, Kumar P, Ozcan A, Warghane A, Motghare M, Santra S, Sharma AK (2018) Antimicrobial nano-zinc oxide-2S albumin protein formulation significantly inhibits growth of “Candidatus Liberibacter asiaticus” in planta. PLoS One 13:e0204702

    PubMed  PubMed Central  Google Scholar 

  • Gottwald TR (2010) Current epidemiological understanding of citrus Huanglongbing. Annual Review of Phytopathology 48:119–139

    CAS  PubMed  Google Scholar 

  • Gottwald TR, da Graça JV, Bassanezi RB (2007) Citrus Huanglongbing: the pathogen and its impact. Plant Health Progress

  • Gottwald TR, Graham JH, Irey MS, McCollum TG, Wood BW (2012) Inconsequential effect of nutritional treatments on Huanglongbing control, fruit quality, bacterial titer and disease progress. Crop Protection 36:73–82

    Google Scholar 

  • Green ER, Mecsas J (2016) Bacterial secretion systems: an overview. Microbiology Spectrum 4

  • Hajeri S, Killiny N, El-Mohtar C, Dawson WO, Gowda S (2014) Citrus tristeza virus-based RNAi in citrus plants induces gene silencing in Diaphorina citri, a phloem-sap sucking insect vector of citrus greening disease (Huanglongbing). Journal of Biotechnology 176:42–49

    CAS  PubMed  Google Scholar 

  • Hao G, Boyle M, Zhou L, Duan Y (2013) The intracellular citrus Huanglongbing bacterium, ‘Candidatus Liberibacter asiaticus’ encodes two novel autotransporters. PLoS One 8:e68921

    CAS  PubMed  PubMed Central  Google Scholar 

  • Hao G, Stover E, Gupta G (2016) Overexpression of a modified plant thionin enhances disease resistance to citrus canker and Huanglongbing (HLB). Frontiers in Plant Science 7:1078

    PubMed  PubMed Central  Google Scholar 

  • Hao G, Ammar D, Duan Y, Stover E (2019) Transgenic citrus plants expressing a ‘Candidatus Liberibacter asiaticus’ prophage protein LasP235 display Huanglongbing-like symptoms. Agri Gene 12:1–10

  • Hu J, Jiang J, Wang N (2018) Control of citrus Huanglongbing via trunk injection of plant defense activators and antibiotics. Phytopathology 108:186–195

    CAS  PubMed  Google Scholar 

  • Hunter W (2018) Biotechnology: RNAi, antisense oligonucleotides and CRISPR strategies to reduce psyllids and bacterial pathogens in citrus trees. In ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY. 1155 16TH ST, NW, WASHINGTON, DC 20036 USA: AMER CHEMICAL SOC. 256

  • Hunter WB, Gonzalez MT, Tomich J (2019) BAPC-assisted-CRISPR-Cas9 delivery into nymphs and adults for heritable gene editing (Hemiptera). The FASEB Journal 33:supplement 626.2

    Google Scholar 

  • Ibanez F, Killiny N, Albrigo LG, Stelinski L (2019) Does reducing psyllids help when HLB is present everywhere? Citrus Industry Magazine. http://citrusindustry.net/2019/09/23/doesreducing-psyllids-help-when-hlb-is-present-everywhere/

  • Ibarra-Cortes KH, Guzman-Franco AW, Gonzalez-Hernandez H, Ortega-Arenas LD, Villanueva-Jimenez JA, Robles-Bermudez A (2018) Susceptibility of Diaphorina citri (Hemiptera: Liviidae) and its parasitoid Tamarixia radiata (Hymenoptera: Eulophidae) to Entomopathogenic Fungi under laboratory conditions. Neotropical Entomology 47:131–138

    CAS  PubMed  Google Scholar 

  • Jain M, Fleites LA, Gabriel DW (2015) Prophage-encoded peroxidase in ‘Candidatus Liberibacter asiaticus’ is a secreted effector that suppresses plant defenses. Molecular Plant-Microbe Interactions 28:1330–1337

    CAS  PubMed  Google Scholar 

  • Jia H, Orbovic V, Wang N (2019) CRISPR-LbCas12a-mediated modification of citrus. Plant Biotechnology Journal

  • Joa JH, Weon HY, Hyun HN, Jeun YC, Koh SW (2014) Effect of long-term different fertilization on bacterial community structures and diversity in citrus orchard soil of volcanic ash. Journal of Microbiology 52:995–1001

    CAS  Google Scholar 

  • Johnson EG, Wu J, Bright DB, Graham JH (2014) Root loss on presymptomatic Huanglongbing affected trees is preceded by Candidatus Liberibacter asiaticus root infection but not phloem plugging. Plant Pathology Journal 63:290–298

    Google Scholar 

  • Kachlany SC, Planet PJ, Desalle R, Fine DH, Figurski DH, Kaplan JB (2001) flp-1, the first representative of a new pilin gene subfamily, is required for non-specific adherence of Actinobacillus actinomycetemcomitans. Molecular Microbiology 40:542–554

    CAS  PubMed  Google Scholar 

  • Kanonenberg K, Schwarz CK, Schmitt L (2013) Type I secretion systems - a story of appendices. Research in Microbiology 164:596–604

    CAS  PubMed  Google Scholar 

  • Katoh H, Miyata S, Inoue H, Iwanami T (2014) Unique features of a Japanese ‘Candidatus Liberibacter asiaticus’ strain revealed by whole genome sequencing. PLoS One 9:e106109

    PubMed  PubMed Central  Google Scholar 

  • Killiny N, Hajeri S, Tiwari S, Gowda S, Stelinski LL (2014) Double-stranded RNA uptake through topical application, mediates silencing of five CYP4 genes and suppresses insecticide resistance in Diaphorina citri. PLoS One 9:e110536

    PubMed  PubMed Central  Google Scholar 

  • Kishk A, Anber HA, AbdEl-Raof TK, El-Sherbeni AD, Hamed S, Gowda S, Killiny N (2017) RNA interference of carboxyesterases causes nymph mortality in the Asian citrus psyllid, Diaphorina citri. Archives of Insect Biochemistry and Physiology 94

  • Langdon KW, Schumann R, Stelinski LL, Rogers ME (2018a) Influence of tree size and application rate on expression of thiamethoxam in citrus and its efficacy against Diaphorina citri (Hemiptera: Liviidae). Journal of Economic Entomology 111:770–779

    CAS  PubMed  PubMed Central  Google Scholar 

  • Langdon KW, Schumann R, Stelinski LL, Rogers ME (2018b) Spatial and temporal distribution of soil-applied neonicotinoids in citrus tree foliage. Journal of Economic Entomology 111:1788–1798

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ledford H (2017) Geneticists enlist engineered virus and CRISPR to battle citrus disease. Nature 545:277–278

    CAS  PubMed  Google Scholar 

  • Li J, Trivedi P, Wang N (2016) Field evaluation of plant defense inducers for the control of citrus Huanglongbing. Phytopathology 106:37–46

    CAS  PubMed  Google Scholar 

  • Li J, Pang Z, Trivedi P, Zhou X, Ying X, Jia H, Wang N (2017) ‘Candidatus Liberibacter asiaticus’ encodes a functional salicylic acid (SA) hydroxylase that degrades SA to suppress plant defenses. Molecular Plant-Microbe Interactions 30:620–630

    CAS  PubMed  Google Scholar 

  • Li J, Li L, Pang Z, Kolbasov VG, Ehsani R, Carter EW, Wang N (2019a) Developing citrus Huanglongbing (HLB) management strategies based on the severity of symptoms in HLB-endemic citrus-producing regions. Phytopathology 109:582–592

    PubMed  Google Scholar 

  • Li J, Pang Z, Duan S, Lee D, Kolbasov V, Wang N (2019b) The in planta effective concentration of oxytetracycline against Candidatus Liberibacter asiaticus for suppression of citrus Huanglongbing. Phytopathology 109:2046–2054

    PubMed  Google Scholar 

  • Lin H, Pietersen G, Han C, Read DA, Lou B, Gupta G, Civerolo EL (2015) Complete genome sequence of “Candidatus Liberibacter africanus,” a bacterium associated with citrus Huanglongbing. Genome Announcements 3:e00733-15

    PubMed  PubMed Central  Google Scholar 

  • Liu X, Fan Y, Zhang C, Dai M, Wang X, Li W (2019) Nuclear import of a secreted “Candidatus Liberibacter asiaticus” protein is temperature dependent and contributes to pathogenicity in Nicotiana benthamiana. Frontiers in Microbiology 10:1684

    PubMed  PubMed Central  Google Scholar 

  • Lu HL, Li LT, Yu LC, He LM, Ouyang GC, Liang GW, Lu YY (2019) Ectoparasitic mite, Pyemotes zhonghuajia (Prostigmata: Pyemotidae), for biological control of Asian citrus psyllid, Diaphorina citri (Hemiptera: Liviidae). Systematic and Applied Acarology 24:520–524

    Google Scholar 

  • McKenna M (2019) Antibiotics set to flood Florida’s troubled orange orchards. Nature 567:302–303

    CAS  PubMed  Google Scholar 

  • Meuskens I, Saragliadis A, Leo JC, Linke D (2019) Type V secretion systems: an overview of passenger domain functions. Frontiers in Microbiology 10:1163

    PubMed  PubMed Central  Google Scholar 

  • Miles GP, Stover E, Ramadugu C, Keremane ML, Lee RF (2017) Apparent tolerance to Huanglongbing in citrus and citrus-related germplasm. HortSci 51:31–39

    Google Scholar 

  • Miranda MP, Zanardi OZ, Tomaseto AF, Volpe HX, Garcia RB, Prado E (2018) Processed kaolin affects the probing and settling behavior of Diaphorina citri (Hemiptera: Lividae). Pest Management Science 74:1964–1972

    CAS  PubMed  Google Scholar 

  • Mohari B, Thompson MA, Trinidad JC, Setayeshgar S, Fuqua C (2018) Multiple flagellin proteins have distinct and synergistic roles in agrobacterium tumefaciens motility. Journal of Bacteriology 200

  • National Academies of Sciences E, and Medicine. (2018) A review of the Citrus Greening Research and Development efforts supported by the Citrus Research and Development Foundation: fighting a ravaging disease. National Academies Press. Washington, DC

  • Ou D, Zhang LH, Guo CF, Chen XS, Ali S, Qiu BL (2019) Identification of a new Cordyceps javanica fungus isolate and its toxicity evaluation against Asian citrus psyllid. Microbiology Open 8:e760

    Google Scholar 

  • Ozores-Hampton M, Adair R, Stansly PA (2015) Using compost in citrus. Citrus Industry Magazine 12:8–11. https://crec.ifas.ufl.edu/extension/trade_journals/2015/2015_December_compost.pdf

  • Pagliaccia D, Shi J, Pang Z, Hawara E, Clark K, Thapa SP, De Francesco AD, Liu J, Tran TT, Bodaghi S, Folimonova SY, Ancona V, Mulchandani A, Coaker G, Wang N, Vidalakis G and Ma W (2017) A pathogen secreted protein as a detection marker for citrus Huanglongbing. Frontiers in Microbiology 8:2041

  • Pagliai FA, Coyle JF, Kapoor S, Gonzalez CF, Lorca GL (2017) LdtR is a master regulator of gene expression in Liberibacter asiaticus. Microbial Biotechnology 10:896–909

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pandey SS, Wang N (2019) Targeted early detection of citrus Huanglongbing causal agent ‘Candidatus Liberibacter asiaticus’ before symptom expression. Phytopathology 109:952–959

    PubMed  Google Scholar 

  • Pardo S, Martínez AM, Figueroa JI, Chavarrieta JM, Viñuela E, Rebollar-Alviter Á, Miranda MA, Valle J and Pineda S (2018) Insecticide resistance of adults and nymphs of Asian citrus psyllid populations from Apatzingán Valley, Mexico. Pest Management Science 74:135–140

  • Pelz-Stelinski KS, Brlansky RH, Ebert TA, Rogers ME (2010) Transmission parameters for Candidatus liberibacter asiaticus by Asian citrus psyllid (Hemiptera: Psyllidae). Journal of Economic Entomology 103:1531–1541

    CAS  PubMed  Google Scholar 

  • Pitino M, Armstrong CM, Cano LM, Duan Y (2016) Transient expression of Candidatus Liberibacter Asiaticus effector induces cell death in Nicotiana benthamiana. Frontiers in Plant Science 7:982

    PubMed  PubMed Central  Google Scholar 

  • Pitino M, Allen V, Duan Y (2018) LasDelta5315 effector induces extreme starch accumulation and chlorosis as Ca. Liberibacter asiaticus infection in Nicotiana benthamiana. Frontiers in Plant Science 9:113

    PubMed  PubMed Central  Google Scholar 

  • Prasad S, Xu J, Zhang Y, Wang N (2016) SEC-Translocon dependent extracytoplasmic proteins of Candidatus Liberibacter asiaticus. Frontiers in Microbiology 7:1989

    PubMed  PubMed Central  Google Scholar 

  • Ramadugu C, Keremane ML, Halbert SE, Duan YP, Roose ML (2016) Long-term field evaluation reveals Huanglongbing resistance in citrus relatives. Plant Disease 100:1858–1869

    PubMed  Google Scholar 

  • Ramírez-Godoy A, Vera-Hoyos M, Jimenez-Beltran N, Restrepo-Diaz H (2018) Application of foliar synthetic elicitors for the management of Diaphorina citri (Hemiptera: Liviidae) populations in Tahiti lime (Citrus latifolia Tanaka). HortScience 53:1012–1020

    Google Scholar 

  • Ravindran A, Saenkham P, Levy J, Tamborindeguy C, Lin H, Gross DC, Pierson E (2018) Characterization of the serralysin-like gene of ‘Candidatus Liberibacter solanacearum’ associated with potato zebra chip disease. Phytopathology 108:327–335

    CAS  PubMed  Google Scholar 

  • Robertson CJ, Zhang X, Gowda S, Orbović V, Dawson WO & Mou Z (2018) Overexpression of the Arabidopsis NPR1 protein in citrus confers tolerance to Huanglongbing. Journal of Citrus Pathology. iocv_journalcitruspathology_38911

  • Rouse ER, Ozores-Hampton M, Roka F, Roberts P (2017) Rehabilitation of Huanglongbing-affected citrus trees using severe pruning and enhanced foliar nutritional treatments. HortScience 52:972–978

    CAS  Google Scholar 

  • Roux N, Spagnolo J, de Bentzmann S (2012) Neglected but amazingly diverse type IVb pili. Research in Microbiology 163:659–673

    CAS  PubMed  Google Scholar 

  • Saldarriaga Ausique JJ, D’Alessandro CP, Conceschi MR, Mascarin GM, Júnior ID (2017) Efficacy of entomopathogenic fungi against adult Diaphorina citri from laboratory to field applications. Journal of Pest Science 90:947–960

    Google Scholar 

  • Santos-Ortega Y, Killiny N (2018) Silencing of sucrose hydrolase causes nymph mortality and disturbs adult osmotic homeostasis in Diaphorina citri (Hemiptera: Liviidae). Insect Biochemistry and Molecular Biology 101:131–143

    CAS  PubMed  Google Scholar 

  • Scharf B, Schuster-Wolff-Buhring H, Rachel R, Schmitt R (2001) Mutational analysis of the Rhizobium lupini H13-3 and Sinorhizobium meliloti flagellin genes: importance of flagellin A for flagellar filament structure and transcriptional regulation. Journal of Bacteriology 183:5334–5342

    CAS  PubMed  PubMed Central  Google Scholar 

  • Schumann A & Singerman A (2016) The economics of citrus under cover production systems and whole tree thermotherapy. Citrus Industry Magazine 1:14–18. https://crec.ifas.ufl.edu/extension/trade_journals/2016/2016_January_economics.pdf

  • Shelton AM, Badenes-Perez FR (2006) Concepts and applications of trap cropping in pest management. Annual Review of Entomology 51:285–308

    CAS  PubMed  Google Scholar 

  • Shen W, Cevallos-Cevallos JM, Nunes da Rocha U, Arevalo HA, Stansly PA, Roberts PD, van Bruggen AHC (2013) Relation between plant nutrition, hormones, insecticide applications, bacterial endophytes, and Candidatus Liberibacter Ct values in citrus trees infected with Huanglongbing. European Journal of Plant Pathology 137:727

    CAS  Google Scholar 

  • Shi Q, Pitino M, Zhang S, Krystel J, Cano LM, Shatters RG Jr, Hall DG, Stover E (2019) Temporal and spatial detection of Candidatus Liberibacter asiaticus putative effector transcripts during interaction with Huanglongbing-susceptible, -tolerant, and -resistant citrus hosts. BMC Plant Biology 19:122

    PubMed  PubMed Central  Google Scholar 

  • Stelinski L, Qureshi JA, Albrigo LG (2019) Putting IPM back in citrus. Citrus Industry Magazine. http://citrusindustry.net/2019/07/22/putting-ipm-back-in-citrus/

  • Stover E, Inch S, Richardson ML, Hall DG (2016) Conventional citrus of some scion/rootstock combinations show field tolerance under high Huanglongbing disease pressure. HortScience 51:127–132

    Google Scholar 

  • Strauss S, Kadyampakeni D, Kanissery R, Wade T, Diepenbrock L, Popenoe J (2019) Cover props for citrus. Citrus Industry Magazine 4:16–19. http://citrusindustry.net/2019/04/09/cover-crops-for-citrus/

  • Tang J, Ding Y, Nan J, Yang X, Sun L, Zhao X, Jiang L (2018) Transcriptome sequencing and ITRAQ reveal the detoxification mechanism of Bacillus GJ1, a potential biocontrol agent for Huanglongbing. PLoS One 13:e0200427

    PubMed  PubMed Central  Google Scholar 

  • Tansey JA, Vanaclocha P, Monzo C, Jones M, Stansly PA (2017) Costs and benefits of insecticide and foliar nutrient applications to Huanglongbing-infected citrus trees. Pest Management Science 73:904–916

    CAS  PubMed  Google Scholar 

  • Tian F, Mo X, Rizvi SAH, Li C and Zeng X (2018) Detection and biochemical characterization of insecticide resistance in field populations of Asian citrus psyllid in Guangdong of China. Scientific Reports 8:12587

  • Tomaseto AF, Marques RN, Fereres A, Zanardi OZ, Volpe HXL, Alquézar B, Peña L, Miranda MP (2019) Orange jasmine as a trap crop to control Diaphorina citri. Scientific Reports 14:2070

    Google Scholar 

  • Trinidad-Cruz JR, Rincón-Enríquez G, Quiñones Aguilar EE, Arce-Leal AP, Leyva-López NE (2019) Inductors of plant resistance in the control of Candidatus Liberibacter asiaticus in Mexican lemon (Citrus aurantifolia) trees. Mexican. Journal of Phytopathology 37:304–317

    Google Scholar 

  • Trivedi P, Spann T, Wang N (2011) Isolation and characterization of beneficial bacteria associated with citrus roots in Florida. Microbial Ecology 62:324–336

    CAS  PubMed  Google Scholar 

  • Vankosky MA, Hoddle MS (2019) An assessment of interspecific competition between two introduced parasitoids of Diaphorina citri (Hemiptera: Liviidae) on caged citrus plants. Insect Science 26:119–127

    PubMed  Google Scholar 

  • Vincent C, Pierre M, Li J, Wang N (2019) Implications of heat treatment and systemic delivery of foliar-applied oxytetracycline on citrus physiological management and therapy delivery. Frontiers in Plant Science 10:41

    PubMed  PubMed Central  Google Scholar 

  • Wang N (2019) The citrus Huanglongbing crisis and potential solutions. Molecular Plant 12:607–609

    CAS  PubMed  Google Scholar 

  • Wang N, Trivedi P (2013) Citrus Huanglongbing: a newly relevant disease presents unprecedented challenges. Phytopathology 103:652–665

    PubMed  Google Scholar 

  • Wang N, Pierson EA, Setubal JC, Xu J, Levy JG, Zhang Y, Li J, Rangel LT, Martins J Jr (2017) The Candidatus Liberibacter-host interface: insights into pathogenesis mechanisms and disease control. Annual Review of Phytopathology 55:451–482

    CAS  PubMed  Google Scholar 

  • Wulff NA, Zhang S, Setubal JC, Almeida NF, Martins EC, Harakava R, Kumar D, Rangel LT, Foissac X, Bove JM, Gabriel DW (2014) The complete genome sequence of ‘Candidatus Liberibacter americanus’, associated with citrus Huanglongbing. Molecular Plant-Microbe Interactions 27:163–176

    CAS  PubMed  Google Scholar 

  • Yan Q, Sreedharan A, Wei S, Wang J, Pelz-Stelinski K, Folimonova S, Wang N (2013) Global gene expression changes in Candidatus Liberibacter asiaticus during the transmission in distinct hosts between plant and insect. Molecular Plant Pathology 14:391–404

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yang C, Zhong Y, Powell CA, Doud MS, Duan Y, Huang Y, Zhang M (2018) Antimicrobial compounds effective against Candidatus Liberibacter asiaticus discovered via graft-based assay in citrus. Scientific Reports 8:17288–17211

    PubMed  PubMed Central  Google Scholar 

  • Yen MR, Peabody CR, Partovi SM, Zhai Y, Tseng YH, Saier MH (2002) Protein-translocating outer membrane porins of gram-negative bacteria. Biochimica et Biophysica Acta 1562:6–31

    CAS  PubMed  Google Scholar 

  • Young M, Ozcan A, Myers ME, Johnson EG, Graham JH, Santra S (2018) Multimodal generally recognized as safe ZnO/nanocopper composite: a novel antimicrobial material for the management of citrus phytopathogens. Journal of Agricultural and Food Chemistry 66:6604–6608

    CAS  PubMed  Google Scholar 

  • Yu X, Lund SP, Scott RA, Greenwald JW, Records AH, Nettleton D, Lindow SE, Gross DC, Beattie GA (2013) Transcriptional responses of Pseudomonas syringae to growth in epiphytic versus apoplastic leaf sites. Proceedings of the National Academy of Sciences of the United States of America 110:E425–E434

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang F, LeBlanc C, Irish VF, Jacob Y (2017) Rapid and efficient CRISPR/Cas9 gene editing in citrus using the YAO promoter. Plant Cell Reports 36:1883–1887

    CAS  PubMed  Google Scholar 

  • Zhang M, Yang C, Powell CA, Avery PB, Wang J, Huang Y, Duan Y (2018) Field evaluation of integrated management for mitigating citrus Huanglongbing in Florida. Frontiers in Plant Science 9:1890

    PubMed  Google Scholar 

  • Zheng Z, Wu F, Kumagai LB, Polek M, Deng X, Chen J (2017) Two ‘Candidatus Liberibacter asiaticus’ strains recently found in California harbor different prophages. Phytopathology 107:662–668

    CAS  PubMed  Google Scholar 

  • Zheng Z, Chen J, Deng X (2018) Historical perspectives, management, and current research of citrus HLB in Guangdong Province of China, where the disease has been endemic for over a hundred years. Phytopathology 108:1224–1236

    PubMed  Google Scholar 

  • Zou H, Gowda S, Zhou L, Hajeri S, Chen G, Duan Y (2012) The destructive citrus pathogen, ‘Candidatus Liberibacter asiaticus’ encodes a functional flagellin characteristic of a pathogen-associated molecular pattern. PLoS One 7:e46447

    CAS  PubMed  PubMed Central  Google Scholar 

  • Zou X, Jiang X, Xu L, Lei T, Peng A, He Y, Yao L, Chen S (2017) Transgenic citrus expressing synthesized cecropin B genes in the phloem exhibits decreased susceptibility to Huanglongbing. Plant Molecular Biology 93:341–353

    CAS  PubMed  Google Scholar 

Download references

Acknowledgments

This work has been supported by the Florida Citrus Initiative Program, Citrus Research and Development Foundation, USDA MAC program, USDA National Institute of Food and Agriculture-USDA Award# 2018-70016-27412, and Award #2016-70016-24833.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nian Wang.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Andrade, M., Li, J. & Wang, N. Candidatus Liberibacter asiaticus: virulence traits and control strategies. Trop. plant pathol. 45, 285–297 (2020). https://doi.org/10.1007/s40858-020-00341-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s40858-020-00341-0

Keywords

Navigation