Skip to main content
Log in

Predicting the Parabolic Rate Constants of High-Temperature Oxidation of Ti Alloys Using Machine Learning

  • Original Paper
  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

In this study, we attempt to build a statistical (machine) learning model to predict the parabolic rate constant \((k_{\text{P}} )\) for the high-temperature oxidation of Ti alloys. Exploring the experimental studies on high-temperature oxidation of Ti alloys, we built our dataset for machine learning. Apart from the alloy composition, we included the constituent phase of the alloy, temperature of oxidation, time for oxidation, oxygen and moisture content, remaining atmosphere (gas except O2 gas in dry atmosphere), and mode of oxidation testing as the independent features while the parabolic rate constant \((k_{\text{P}} )\) is set as the target feature. We employed three different ML models to predict the ‘\(k_{\text{P}}\)’ for Ti alloys. Among the regression models, the gradient boosting regressor yields the coefficient of determination (R2) of 0.92 for \(k_{\text{P}}\). The knowledge gained from this study can be used to design novel Ti alloys with excellent resistance towards high-temperature oxidation.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. R. R. Boyer, Materials Science and Engineering A. 213, 1996 (103).

    Article  Google Scholar 

  2. Y. Kosaka, K. Faller and S. P. Fox, JOM 56, 2004 (32).

    Article  CAS  Google Scholar 

  3. F. H. Froes, C. Suryanarayana and D. Eliezer, Journal of Materials Science 27, 1992 (5113).

    Article  CAS  Google Scholar 

  4. J. Stringer, Acta Metallurgica 8, 1960 (758).

    Article  CAS  Google Scholar 

  5. P. Kofstad, Journal of the Less Common Metals 12, 1967 (449).

    Article  CAS  Google Scholar 

  6. A. M. Chaze and C. Coddet, Journal of Materials Science 22, 1987 (1206).

    Article  CAS  Google Scholar 

  7. T. Kitashima, L. J. Liu and H. Murakami, Journal of the Electrochemical Society 160, 2013 (C441).

    Article  CAS  Google Scholar 

  8. R. W. Evans, R. J. Hull and B. Wilshire, Journal of Materials Processing and Technology 1996, (56), 1996 (492).

    Article  Google Scholar 

  9. A. E. Jenkins, Journal of the Institute of Metals 82, 1954 (213).

    CAS  Google Scholar 

  10. A. E. Jenkins, Journal of the Institute of Metals 84, 1955 (1).

    Google Scholar 

  11. T. Kitashima, Y. Y. Mitarai, S. Iwasaki and S. Kuroda, Effects of Alloying Elements on the Tensile and Oxidation Properties of Alpha and Near-Alpha Ti Alloys. in Proceedings of the 13th World Conference Titanium, The Minerals, Metals and Materials Society, (2016), pp. 479–483.

  12. T. Kitashima and T. Kawamura, Scripta Materialia 2016, (124), 2016 (56).

    Article  Google Scholar 

  13. A. M. Chaze and C. Coddet, Oxidation of Metals 27, 1987 (1).

    Article  CAS  Google Scholar 

  14. D. Vojtech, B. Bàrtová and T. Kubatík, Materials Science and Engineering A. 361, 2003 (50).

    Article  Google Scholar 

  15. S. Matsunaga, S. Serizawa and Y. Y. Mitarai, Materials Transactions 57, 2016 (1902).

    Article  CAS  Google Scholar 

  16. C. Leyens, in Titanium and Titanium Alloys, ed. C. Leyens and M. Peters, (Wiley-VCH GmbH & Co., Weinheim, 2003), p 187.

  17. J. Dai, J. Zhu, C. Chen and F. Weng, Journal of Alloys and Compounds 685, 2016 (784).

    Article  CAS  Google Scholar 

  18. J. Schneider and L. C. Ciacchi, Surface Science 604, 2010 (1105).

    Article  CAS  Google Scholar 

  19. B. Ohler, S. Prada, G. Pacchioni and W. Langel, The Journal of Physical Chemistry C 117, 2013 (358).

    Article  CAS  Google Scholar 

  20. H. H. Wu and D. R. Trinkle, Physical Review Letters 107, 2011 (045504).

    Article  Google Scholar 

  21. H. H. Wu and D. R. Trinkle, Journal of Applied Physics 113, 2013 (223504).

    Article  Google Scholar 

  22. J. Liu, X. Fan, C. Sun and W. Zhu, RSC Advances 6, 2016 (71311).

    Article  CAS  Google Scholar 

  23. K. Maeda, S. Suzuki, K. Ueda, T. Kitashima, S. K. Bhattacharya, R. Sahara and T. Narushima, Journal of Alloys and Compounds 776, 2019 (519).

    Article  CAS  Google Scholar 

  24. S. K. Bhattacharya, R. Sahara, T. Kitashima, K. Ueda and T. Narushima, Japanese Journal of Applied Physics 56, 2017 (125701).

    Article  Google Scholar 

  25. S. K. Bhattacharya, R. Sahara, T. Kitashima, K. Ueda and T. Narushima, Science and Technology of Advanced Materials 18, 2017 (998).

    Article  CAS  Google Scholar 

  26. S. K. Bhattacharya, R. Sahara, T. Kitashima, K. Ueda and T. Narushima, Applied Surface Science 463, 2019 (686).

    Article  CAS  Google Scholar 

  27. D. Shin, S. Lee, A. Shyam and J. A. Hallens, Science and Technology of Advanced Materials 18, 2017 (828).

    Article  Google Scholar 

  28. D. Xue, D. Xue, R. Yuan, Y. Zhou, P. V. Balachandran, X. Ding, J. Sun and T. Lookman, Acta Materialia 125, 2017 (532).

    Article  CAS  Google Scholar 

  29. J. Schmidt, M. R. G. Marques, S. Botti and M. A. L. Marques, npj Computational Materials. 5, 2019 (83).

    Article  Google Scholar 

  30. J. S. Chou, N. T. Ngo and W. K. Chong, Engineering Applications of Artificial Intelligence 65, 2017 (471).

    Article  Google Scholar 

  31. D. Harris and S. Harris, Digital design and computer architecture (2nd ed.). San Francisco, Calif.: Morgan Kaufmann. p. 129. ISBN 978-0-12-394424-5. (2012-08-07).

  32. J. H. Friedman, Annals of Statistics 29, 2001 (1189). https://doi.org/10.1214/aos/1013203451.

    Article  Google Scholar 

  33. L. Mason, J. Baxter, P. Bartlett and M. Frean, Boosting algorithms as gradient descent. in Advances in Neural Information Processing Systems, eds. S. A. Solla, T. K. Leen and K. Müller (MIT Press, Cambridge, 1999), p. 512.

    Google Scholar 

  34. V. Cherkassky and Y. Ma, Neural Computing 15, 2003 (1691).

    Article  Google Scholar 

  35. F. Pedregosa, G. Varoquaux, A. Gramfort, V. Michel, et al., Journal of Machine Learning Research 12, 2012 (2825).

    Google Scholar 

  36. Leave-one-out cross-validation. in eds. C. Sammut, G. I. Webb, Encyclopedia of Machine Learning. (Springer, Boston, 2011).

  37. M. Stone, Journal of Royal Statistical Society: Series B (Methodological) 36, 1974 (111).

    Google Scholar 

  38. T. Kitashima and Y. Y. Mitarai, Metallurgical and Materials Transactions A. 46A, 2015 (2758).

    Article  Google Scholar 

  39. R. Haul and G. Dümbgen, Journal of Physics and Chemistry of Solids 26, 1965 (1).

    Article  CAS  Google Scholar 

  40. E. Iguchi and K. Yajima, Journal of the Physical Society of Japan 32, 1972 (1415).

    Article  CAS  Google Scholar 

  41. K. Kusabiraki, T. Sugihara and T. Ooka, Tetsu-to-Hagane. 78, 1992 (327).

    Article  CAS  Google Scholar 

  42. M. Dechamps and P. Lehr, Journal of the Less-Common Metals 56, 1977 (193).

    Article  CAS  Google Scholar 

  43. L. Bataillou, C. Desgranges, L. Martinelli and D. Monceau, Corrosion Science. 136, 2018 (148).

    Article  CAS  Google Scholar 

  44. K. Aniolek, M. Kupta and D. Grzegorz, Vaccum. 168, 2019 (108859).

    Article  CAS  Google Scholar 

  45. Y. Song, B. Fu, T. Dong, T. Li, F. Wang, X. Zhao and J. Liu, Materials. 13, 2020 (1082).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

SKB is thankful to Dr. Sayan Sarcar, Assistant Professor, Faculty of Library Information and Media Science, University of Tsukuba, Tsukuba, Japan for fruitful discussions. This work was supported by the Council for Science, Technology and Innovation under the Cross-ministerial Strategic Innovation Promotion Program. This study was also partially supported by the Japan Society for the Promotion of Science KAKENHI Grant (Number 18H01718), ISIJ Research Promotion Grant and NIMS-Tohoku cross appointment system.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Somesh Kr. Bhattacharya.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bhattacharya, S.K., Sahara, R. & Narushima, T. Predicting the Parabolic Rate Constants of High-Temperature Oxidation of Ti Alloys Using Machine Learning. Oxid Met 94, 205–218 (2020). https://doi.org/10.1007/s11085-020-09986-3

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11085-020-09986-3

Keywords

Navigation