Skip to main content
Log in

Design and in vitro analysis of SIRT2 inhibitor targeting Parkinson’s disease

  • Original Article
  • Published:
Molecular Diversity Aims and scope Submit manuscript

Abstract

Inhibition of Sirtuin2 (SIRT2) protein rescues the α-synuclein toxicity in vitro and in vivo models of Parkinson’s disease (PD). Thioacetyl group can structurally mimic the acetyl group and restrain the deacetylating p53 reaction by SIRT2. This work evaluated the biological activity of designed pentapeptides inhibitor containing N-thioacetyl-lysine against SIRT2. Pentapeptide by introducing thioacetyl-lysine as an inhibitor of SIRT2 was screened by molecular docking and synthesized by solid phase method. The inhibition of pure recombinant SIRT2 as well as SIRT2 in serum of PD patients by peptide was done by fluorescent activity assay. The inhibition of SIRT2 was assessed in PC12 cell line by measuring acetylated α-tubulin level. The peptide YKK(ε-thioAc)AM and HRK(ε-thioAc)AM were found to be SIRT2 inhibitors by molecular docking. However, YKK(ε-thioAc)AM was more specific towards SIRT2 than SIRT1 (Sirtuin1). It inhibited recombinant SIRT2 by IC50 value of 0.15 µM and KD values 9.92 × 10−8/M. It also inhibited serum SIRT2 of PD. It increased the acetylation of α-tubulin in PC12 neuroblastoma cells which is essential for maintaining the microtubular cell functions of brain. It can be concluded that novel peptide YKK(ε-thioAc)AM may be a platform for therapeutic agent for Parkinson’s disease targeting SIRT2.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Data availability

The data that support the findings of this study are openly available in manuscript, figures and tables.

References

  1. Greenamyre JT, Hastings TG (2004) Biomedicine: Parkinson’s—divergent causes, convergent mechanisms. Science 304:1120–1122. https://doi.org/10.1126/science.1098966

    Article  CAS  PubMed  Google Scholar 

  2. Grabowska W, Sikora E, Bielak-Zmijewska A (2017) Sirtuins, a promising target in slowing down the ageing process. Biogerontology 18:447–476. https://doi.org/10.1007/s10522-017-9685-9

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Guarente L (2007) Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol 72:483–488. https://doi.org/10.1007/978-1-62703-637-5_1

    Article  CAS  PubMed  Google Scholar 

  4. Singh P, Hanson PS, Morris CM (2017) SIRT1 ameliorates oxidative stress induced neural cell death and is down-regulated in Parkinson’s disease. BMC Neurosci 18:46–58. https://doi.org/10.1186/s12868-017-0364-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Kazantsev AG, Kolchinsky AM (2008) Central role of alpha-synuclein oligomers in neurodegeneration in Parkinson’s disease. Arch Neurol 65:1577–1581. https://doi.org/10.1001/archneur.65.12.1577

    Article  PubMed  Google Scholar 

  6. Portran D, Schaedel L, Xu Z, Manuel T, Maxence VN (2017) Tubulin acetylation protects long-lived microtubules against mechanical ageing. Nat Cell Biol 19:391–398. https://doi.org/10.1038/ncb3481

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Singh AP, Ramana G, Bajaj T, Singh V, Dwivedi SN, Behari M, Dey AB, Dey S (2019) Elevated serum SIRT2 may differentiate Parkinson’s disease from atypical Parkinsonian syndromes. Front Mol Neurosci 12:129. https://doi.org/10.3389/fnmol.2019.00129

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Garske AL, Smith BC, Denu JM (2007) Linking SIRT2 to Parkinson’s disease. ACS Chem Biol 2:529–532. https://doi.org/10.1021/cb700160d

    Article  CAS  PubMed  Google Scholar 

  9. Liu L, Arun A, Ellis L, Peritore C, Donmez G (2014) SIRT2 enhances 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-induced nigrostriatal damage via apoptotic pathway. Front Aging Neurosci 6:184–189. https://doi.org/10.3389/fnagi.2014.00184

    Article  PubMed  PubMed Central  Google Scholar 

  10. Outeiro TF, Kontopoulos E, Altmann SM, Kufareva I, Strathearn KE, Allison M (2007) Sirtuin 2 inhibitors rescue α-synuclein-mediated toxicity in models of Parkinson disease. Science 317:516–519. https://doi.org/10.1126/science.1143780

    Article  CAS  PubMed  Google Scholar 

  11. D’Hondt M, Bracke N, Taevernier L, Gevaert B, Verbeke F, Wynendaele E, Spiegeleer DB (2014) Related impurities in peptide medicines. J Pharm Biomed Anal 101:2–30. https://doi.org/10.1016/j.jpba.2014.06.012

    Article  CAS  PubMed  Google Scholar 

  12. Smith BC, Denu JM (2007) Sir2 deacetylases exhibit nucleophilic participation of acetyl-lysine in NAD + cleavage. J Am Chem Soc 129:5802–5803. https://doi.org/10.1021/ja070162w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Fatkins DG, Monnot AD, Zheng W (2006) A multi-facet functional probe for enzymatic protein lysine Nε-deacetylation. Bioorg Med Chem Lett 16:3651–3656. https://doi.org/10.1016/j.bmcl.2006.04.075

    Article  CAS  PubMed  Google Scholar 

  14. Schrödinger Release 2020-2 (2020) LigPrep. Schrödinger, LLC, New York, NY

  15. Cao D, Wang M, Qiu X, Liu D, Jiang H, Yang N, Xu RM (2015) Structural basis for allosteric, substrate-dependent stimulation of SIRT1 activity by resveratrol. Genes Dev 29(12):1316–1325. https://doi.org/10.1101/gad.265462.115

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Wang Y, Zhang WZ, Hao Q (2016) Sirt2 in complex with a myristoyl peptide. https://doi.org/10.2210/pdb4x3o/pdb (under publication)

  17. Cui H, Kamal Z, Ai T, Xu Y, More S, Wilson D D, Chen L (2014) Discovery of potent and selective sirtuin2 (SIRT2) inhibitors using a fragment-based approach. J Med Chem 57:8340–8357. https://doi.org/10.1021/jm500777s

    Article  CAS  PubMed  Google Scholar 

  18. Heinke R, Carlino L, Kannan S, Jung M, Sippl W (2011) Computer- and structure-based lead design for epigenetic targets. Bioorg Med Chem 19:3605–3615. https://doi.org/10.1016/j.bmc.2011.01.029

    Article  CAS  PubMed  Google Scholar 

  19. Neugebauer RC, Uchiechowska U, Meier R, Hruby H, Valkov V, Verdin E, Sippl W, Jung M (2008) Structure–activity studies on splitomicin derivatives as sirtuin inhibitors and computational prediction of binding mode. J Med Chem 51:1203–1213. https://doi.org/10.1021/jm700972e

    Article  CAS  PubMed  Google Scholar 

  20. Somvanshi RK, Kumar A, Kant S, Gupta D, Singh Bhaskar S, Das U, Srinivasan A, Singh TP, Dey S (2007) Surface plasmon resonance studies and biochemical evaluation of a potent peptide inhibitor against cyclooxygenase-2 4 as an anti-inflammatory agent. Biochem Biophys Res Commun 361:37–42. https://doi.org/10.1016/j.bbrc.2007.06.122

    Article  CAS  PubMed  Google Scholar 

  21. Shekhar S, Yadav SK, Rai N, Kumar R, Yadav Y, Tripathi M, Dey AB, Dey S (2017) Affiliations expand. 5-LOX in Alzheimer’s disease: potential serum marker and in vitro evidences for rescue of neurotoxicity by its inhibitor YWCS. Mol Neurobiol 55:2754–2762. https://doi.org/10.1007/s12035-017-0527-1

    Article  CAS  PubMed  Google Scholar 

  22. Moniot S, Schutkowski M, Steegborn C (2013) Crystal structure analysis of human Sirt2 and its ADP-ribose complex. J Struct Biol 182:136–143. https://doi.org/10.1016/j.jsb.2013.02.012

    Article  CAS  PubMed  Google Scholar 

  23. Yamagata K, Goto Y, Nishimasu H, Morimoto J, Ishitani R, Dohmae N, Takeda N, Nagai R, Komuro I, Suga H, Nureki O (2014) Structural basis for potent inhibition of SIRT2 deacetylase by a macrocyclic peptide inducing dynamic structural change. Structure 22:345–352. https://doi.org/10.1016/j.str.2013.12.001

    Article  CAS  PubMed  Google Scholar 

  24. Friesner RA, Murphy RB, Repasky MP, Frye LL, Greenwood JR, Halgren TA, Paul CS, Mainz DT (2006) Extra precision glide: docking and scoring incorporating a model of hydrophobic enclosure for protein–ligand complexes. J Med Chem 49:6177–6196. https://doi.org/10.1021/jm051256o

    Article  CAS  PubMed  Google Scholar 

  25. Schutkowski M, Fischer F, Roessler C, Steegborn C (2014) New assays and approaches for discovery and design of Sirtuin modulators. Expert Opin Drug Discov 9:183–199. https://doi.org/10.1517/17460441.2014.875526

    Article  CAS  PubMed  Google Scholar 

  26. Nogales E (2000) Structural insights into microtubule function. Annu Rev Biochem 69:277–302. https://doi.org/10.1146/annurev.biochem.69.1.277

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Authors acknowledge Council of Scientific and Industrial Research (CSIR) for providing funds for the consumable items.

Funding

Council of Scientific and Industrial Research (CSIR) (Grant No. 27(0335)/18/EMR-II) provided fund for the consumable items.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sharmistha Dey.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Ethical approval

Ethical approval was obtained from the All India Institute of Medical Sciences ethics committee (IEC-566/03 0.11.2017, RP-02/2017), New Delhi, India and written informed consent was recorded from the participants.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, A.P., Nigam, L., Yadav, Y. et al. Design and in vitro analysis of SIRT2 inhibitor targeting Parkinson’s disease. Mol Divers 25, 2261–2270 (2021). https://doi.org/10.1007/s11030-020-10116-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11030-020-10116-z

Keywords

Navigation