Skip to main content
Log in

The calcium channel agonist Bay K 8644 promotes the growth of human liver cancer HepG2 cells in vitro: suppression with overexpressed regucalcin

  • Published:
Molecular and Cellular Biochemistry Aims and scope Submit manuscript

Abstract

Hepatocellular carcinoma is one of the most prevalent malignant diseases and causes a third of cancer-related death. The consequences of altered calcium homeostasis in cancer cells may contribute to tumor progression. Regucalcin plays an inhibitory role in calcium signaling linked to transcription regulation. Regucalcin gene expression is downregulated in the tumor tissues of liver cancer patients, suggesting an involvement as a suppressor in hepatocarcinogenesis. We investigated whether Bay K 8644, an agonist of the L-type Ca2+ channel, promotes the growth of human liver cancer and if the effect of Bay K 8644 is suppressed by overexpressed regucalcin using the HepG2 cell model. The colony formation and growth of HepG2 cells were promoted by culturing with Bay K 8644 (0.1–10 nM). This effect was suppressed by inhibitors of signaling processes linked to cell proliferation, including PD98059 and wortmannin. Death of HepG2 cells was stimulated by Bay K 8644 with higher concentrations (25 and 100 nM). The effects of Bay K 8644 on cell growth and death were abolished by verapamil, an antagonist of calcium channel. Mechanistically, culturing with Bay K 8644 increased levels of mitogen-activated protein kinase (MAPK) and phospho-MAPK. Notably, overexpressed regucalcin suppressed Bay K 8644-promoted growth and death of HepG2 cells. Furthermore, overexpressed regucalcin prevented growth and increased death induced by thapsigargin, which induces the release of intracellular stored calcium. Thus, higher regucalcin expression suppresses calcium signaling linked to the growth of liver cancer cells, providing a novel strategy in treatment of hepatocellular carcinoma with delivery of the regucalcin gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Data availability

The datasets used during the present study are available from the corresponding author upon reasonable request.

References

  1. Sayiner M, Golabl P, Younossi Z (2019) Disease burden of hepatocellular carcinoma: a global perspective. Dig Dis Sci 64:910–917

    CAS  PubMed  Google Scholar 

  2. Mak LY, Cruz-Ramon V, Chinchilla-Lopez P, Torres HA, LoConte NK, Rice JP, Foxhall LE, Sturgis EM, Merrill JK, Bailey HH, Mendez-Sanchez N, Yuen MF, Hwang JP (2018) Global epidemiology, ptrevention, and management of hepatocellularcarcinoma. Am Soc Clin Oncol Educ Book 38:262–279

    PubMed  Google Scholar 

  3. El-Serag HB (2011) Hepatocellular carcinoma. N Engl J Med 365:1118–1127

    CAS  Google Scholar 

  4. Dragani TA (2010) Risk of HCC: genetic heterogeneity and complex genetics. J Hepatol 52:252–257

    CAS  PubMed  Google Scholar 

  5. Cha MY, Kim CM, Park YM, Ryu WS (2004) Hepatitis B virus X protein is essential for the activation of Wnt/beta-catenin signaling in hepatoma cells. Hepatology 39:1683–1693

    CAS  PubMed  Google Scholar 

  6. Shin JW, Chung Y-H (2013) Molecular targeted therapy for hepatocellular carcinoma: current and future. World J Gatroenterol 19:6144–6155

    CAS  Google Scholar 

  7. Meena AS, Sharma A, Kumari R, Mohammad N, Singh VS, Bhat MK (2013) Inherent and acquired resistance to paclitaxel in hepatocellular carcinoma: molecular events involved. PLoS ONE 8:e61524. https://doi.org/10.1371/journal.pone.0061524

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  8. Mohammad N, Singh SV, Malvi P, Chaube B, Athavale D, Vanuopadath M, Nair SS, Nair B, Bhat MK (2015) Strategy to enhance efficancy of doxorubicin in solid tumor cells by methyl-β-cyclodextrin: involvement of p53 and Fas receptor ligand complex. Sci Rep 5:11853. https://doi.org/10.1038/srep11853

    Article  PubMed  PubMed Central  Google Scholar 

  9. Wilhelm SM, Adnane L, Newell P, Villanueva A, Llovet JM, Lynch M (2008) Preclinical overview of sorafenib, a multikinase inhibitor that targets both Raf and VEGF and PDGF receptor tyrosine kinase signaling. Mol Cancer Ther 7:3129–3140

    CAS  PubMed  Google Scholar 

  10. Callegari E, Elamin BK, Sabbioni S, Gramantieri NM (2013) Role of microRNAs in hepatocellular carcinoma: a clinical perspective. Onco Targ Ther 6:1167–1178

    Google Scholar 

  11. Monteith GR, Davis FM, Roberts-Thompson SJ (2012) Calcium channels and pumps in cancer: changes and consequences. J Biol Chem 287:31666–33167

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Tennakoon S, Aggarwal A, Kallay E (2016) The calcium-sensing receptor and the Hallmarks of cancer. Biochim Biophys Acta 1863:1398–1407

    CAS  PubMed  Google Scholar 

  13. Varghese E, Samuel SM, Sadiq Z, Kubatka P, Liskova A, Benacka J, Pazinka P, Kruzliak P, Busselberg P (2019) Anti-cancer agents in proliferation and cell death: the calcium connection. Int J Mol Sci 20:3017. https://doi.org/10.3390/ijms20123017

    Article  CAS  PubMed Central  Google Scholar 

  14. Resende RR, Andrade LM, Oliveira AG, Guimaraes ES, Guatimosim S, Leite MF (2013) Nucleoplasmic calcium signaling and cell proliferation: calcium signaling in the nucleus. Cell Commun Signal 11:14. https://doi.org/10.3390/ijms20123017

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Yamaguchi M, Yamamoto T (1978) Purification of calcium binding substance from soluble fraction of normal rat liver. Chem Pharm Bull (Tokyo) 26:1915–1918

    CAS  Google Scholar 

  16. Shimokawa N, Yamaguchi M (1993) Molecular cloning and sequencing of the cDNA coding for a calcium-binding protein regucalcin from rat liver. FEBS Lett 327:251–255

    CAS  PubMed  Google Scholar 

  17. Shimokawa N, Matsuda Y, Yamaguchi M (1995) Genomic cloning and chromosomal assignment of rat regucalcin gene. Mol Cell Biochem 151:157–163

    CAS  PubMed  Google Scholar 

  18. Yamaguchi M (2005) Role of regucalcin in maintaining cell homeostasis and function. Int J Mol Med 15:372–389

    Google Scholar 

  19. Yamaguchi M (2011) Regucalcin and cell regulation: role as a suppressor in cell signaling. Mol Cell Biochem 353:101–137

    CAS  PubMed  Google Scholar 

  20. Yamaguchi M (2011) The transcriptional regulation of regucalcin gene expression. Mol Cell Biochem 346:147–171

    CAS  PubMed  Google Scholar 

  21. Yamaguchi M (2013) Role of regucalcin in cell nuclear regulation: involvement as a transcription factor. Cell Tissue Res 354:331–341

    CAS  PubMed  Google Scholar 

  22. Yamaguchi M (2013) Suppressive role of regucalcin in liver cell proliferation: Involvement in carcinogenesis. Cell Prolif 46:243–253

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Yamaguchi M (2013) The anti-apoptotic effect of regucalcin is mediated through multisignaling pathways. Apoptosis 18:1145–1153

    CAS  PubMed  PubMed Central  Google Scholar 

  24. Yamaguchi M (2015) Involvement of regucalcin as a suppressor protein in carcinogenesis. Insight into the gene therapy. J Cancer Res Clin Oncol 141:1333–1341

    CAS  PubMed  Google Scholar 

  25. Yamaguchi M, Osuka S, Weitzmann MN, El-Rayes BF, Shoji S, Murata T (2016) Prolonged survival in pancreatic cancer patients with increased regucalcin gene expression: overexpression of regucalcin suppresses the proliferation in human pancreatic cancer MIA PaCa-2 cells in vitro. Int J Oncol 48:1955–1964

    CAS  PubMed  Google Scholar 

  26. Yamaguchi M, Osuka S, Weitzmann MN, Shoji S, Murata T (2016) Increased regucalcin gene expression extends survival in breast cancer patients: overexpression of regucalcin suppresses the proliferation and metastatic bone activity in MDA-MB-231 human breast cancer cells in vitro. Int J Oncol 49:812–822

    CAS  PubMed  Google Scholar 

  27. Yamaguchi M, Osuka S, Weitzmann MN, Shoji S, Murata T (2016) Prolonged survival in hepatocarcinoma patients with increased regucalcin gene expression: HepG2 cell proliferation is suppressed by overexpression of regucalcin in vitro. Int J Oncol 49:1686–1694

    CAS  PubMed  Google Scholar 

  28. Yamaguchi M, Osuka S, Shoji S, Weitzmann MN, Murata T (2017) Survival of lung cancer patients is prolonged with higher regucalcin gene expression: suppressed proliferation of lung adenocarcinoma A549 cells in vitro. Mol Cell Biochem 430:37–46

    CAS  PubMed  Google Scholar 

  29. Yamaguchi M, Osuka S, Murata T (2018) Prolonged survival of colorectal cancer patients is associated with higher regucalcin gene expression: overexpressed regucalcin suppresses growth of human colorectal carcinoma cells in vitro. Int J Oncol 53:1313–1322

    CAS  PubMed  Google Scholar 

  30. Yamaguchi M, Osuka S, Hankinson O, Murata T (2019) Prolonged survival of renal cancer patients is concomitant with a higher regucalcin gene expression in the tumor tissues: overexpression of regucalcin depresses the growth of human renal cell carcinoma cells in vitro. Int J Oncol 54:188–198

    CAS  PubMed  Google Scholar 

  31. Li X, Huang Y, Guo S, Xie M, Bin X, Shi M, Chen A, Chen S, Wu F, Hu Q, Zhou S (2019) Exogenous regucalcin negatively regulates the progression of cervical adenocarcinoma. Oncol Lett 18:609–616

    CAS  PubMed  PubMed Central  Google Scholar 

  32. Yamaguchi M, Murata T (2020) Overexpression of regucalcin supresses the growth of human osteosarcoma cells in vitro: repressive effect of extracellular regucalcin. Cancer Invest 38:37–51

    CAS  PubMed  Google Scholar 

  33. Nitschkowski D, Marwitz S, Kotanidou SA, Reck M, Kugler C, Rabe KF, Ammerpohi O, Goldmann T (2019) Live and let die: epigenetic modifications of survivin and regucalcin in non-small cell lung cancer tissues contribute to malignancy. Clin Epigenet 11:157. https://doi.org/10.1186/s13148-019-0770-6

    Article  CAS  Google Scholar 

  34. Yamaguchi M (2000) Role of regucalcin in calcium signaling. Life Sci 66:1769–1780

    CAS  PubMed  Google Scholar 

  35. Panner A, Wurster RD (2006) T-type calcium channels and tumor proliferation. Cell Calcium 40:253–259

    CAS  PubMed  Google Scholar 

  36. Monge L, Silvestre RA, Miralles P, Peiro E, Villanueva ML, Marco J (1988) In vitro effects of Bay K 8644, a dihydropyridine derivative with hypoglycaemic properties, on hepatic glucose production and pancreatic hormone secretion. Biochem Pharmacol 37:2933–2937

    CAS  PubMed  Google Scholar 

  37. Knowles BB, Howe CC, Aden DP (1980) Human hepatocellular carcinoma cell lines secrete the major plasma protein and hepatitis B surface antigen. Science 209:497–499

    CAS  PubMed  Google Scholar 

  38. Ao L, Guo Y, Song X, Guan Q, Zheng W, Zhang J, Huang H, Guo Z, Wang X (2017) Evaluating hepatocellular carcinoma cell lines for tumour samples using within-sample relative expression orderings of genes. Liver Int 37:1688–1696

    CAS  PubMed  Google Scholar 

  39. Misawa H, Inagaki S, Yamaguchi M (2002) Suppression of cell proliferation and deoxyribonucleic acid synthesis in cloned rat hepatoma H4-II-E cells overexpressing regucalcin. J Cell Biochem 84:143–149

    Google Scholar 

  40. Fang Z, Tang Y, Fang J, Zhou Z, Xing Z, Guo Z, Guo X, Wang W, Jiao W, Xu Z, Liu Z (2013) Simvastatin inhibits renal cancer cell growth and metastasis via AKT/mTOR, ERK and JAK2/STAT3 pathway. PLoS ONE 17(8):e62823

    Google Scholar 

  41. Yamaguchi M, Daimon Y (2005) Overexpression of regucalcin suppresses cell proliferation in cloned rat hepatoma H4-II-E cells: Involvement of intracellular signaling factors and cell cycle-related genes. J Cell Biochem 95:1169–1177

    CAS  PubMed  Google Scholar 

  42. Izumi T, Yamaguchi M (2004) Overexpression of regucalcin suppresses cell death in cloned rat hepatoma H4-II-E cells induced by tumor necrosis factor-α or thapsigargin. J Cell Biochem 92:296–306

    CAS  PubMed  Google Scholar 

  43. Tamaoki T, Nomoto H, Takahashi I, Kato Y, Morimoto M, Tomita E (1986) Staurosporine, a potent inhibitor of phospholipid/Ca2+ dependent protein kinase. Biochem Biophys Res Commun 135:397–402

    CAS  PubMed  Google Scholar 

  44. Nakagawa T, Sawada N, Yamaguchi M (2005) Overexpression of regucalcin suppresses cell proliferation of cloned normal rat kidney proximal tubular epithelial NRK52E cells. Int J Mol Med 16:637–643

    CAS  PubMed  Google Scholar 

  45. Peleck SL, Charest DL, Mordret GP, Siow YL, Palaty C, Campbell D, Chaslton L, Samiei M, Sanghera JS (1993) Networking with mitogen-activated protein kinases. Mol Cell Biochem 127:157–169

    Google Scholar 

  46. Serrano-Nascimento C, da Silva TS, Nicola JP, Nachbar RT, Masini-Repiso AM, Nunes MT (2014) The acute inhibitory effect of iodide excess on sodium/iodide symporter expression and activity involves the PI3K/Akt signaling pathway. Endocrinology 155:1145–1156

    PubMed  Google Scholar 

  47. Vohra J (1982) Verapamil in cardiac arrhythmias: an overview. Clin Exp Pharmacol Physiol Suppl 6:129–134

    CAS  PubMed  Google Scholar 

  48. Kaneko Y, Tsukamoto A (1994) Thapsigargin-induced persistent intracellular calcium pool depletion and apoptosis in human hepatoma cells. Cancer Lett 79:147–155

    CAS  PubMed  Google Scholar 

  49. Rosado JA, Rosenzweig I, Harding S, Sage SO (2001) Tumor necrosis factor-α inhibits store-mediated Ca2+ entry in the human hepatocellular carcinoma cell line. Am J Physiol Cell Physiol 280:C1636–C1644

    CAS  PubMed  Google Scholar 

  50. Ali ES, Rychkov GY, Barritt GJ (2019) Deranged hepatocyte intracellular Ca2+ homeostasis and the progression of non-alcoholic fatty liver disease to hepatocellular carcinoma. Cell Calcium 82:102057. https://doi.org/10.1016/j.ceca.2019.102057

    Article  CAS  PubMed  Google Scholar 

  51. Yamaguchi M, Sakurai T (1991) Inhibitory effect of calcium-binding protein regucalcin on Ca2+-activated DNA fragmentation in rat liver nuclei. FEBS Lett 279:281–284

    CAS  PubMed  Google Scholar 

  52. Tsurusaki Y, Yamaguchi M (2004) Role of regucalcin in liver nuclear function: Binding of regucalcin to nuclear protein or DNA and modulation of tumor-related gene expression. Int J Mol Med 14:277–281

    CAS  PubMed  Google Scholar 

  53. Mori S, Yamaguchi M (1990) Hepatic calcium-binding protein regucalcin decreases Ca2+/calmodulin-dependent protein kinase activity in rat liver cytosol. Chem Pharm Bull (Tokyo) 38:2216–2218

    CAS  Google Scholar 

  54. Yamaguchi M, Mori S (1990) Inhibitory effect of calcium-binding protein regucalcin on protein kinase C activity in rat liver cytosol. Biochem Med Metab Biol 43:140–146

    CAS  PubMed  Google Scholar 

  55. Murata T, Yamaguchi M (1997) Molecular cloning of the cDNA coding for regucalcin and its mRNA expression in mouse liver: The expression is stimulated by calcium administration. Mol Cell Biochem 173:127–133

    CAS  PubMed  Google Scholar 

  56. Murata T, Yamaguchi M (1998) Ca2+ administration stimulates the binding of AP-1 factor to the 5’-flanking region of the rat gene for the Ca2+-binding protein regucalcin. Biochem J 329:157–163

    CAS  PubMed  PubMed Central  Google Scholar 

  57. Takahashi H, Yamaguchi M (1999) Role of regucalcin as an activator of Ca2+-ATPase activity in rat liver microsomes. J Cell Biochem 74:663–669

    CAS  PubMed  Google Scholar 

  58. Takahashi H, Yamaguchi M (2000) Stimulatory effect of regucalcin on ATP-dependent Ca2+ uptake activity in rat liver mitochondria. J Cell Biochem 78:121–130

    CAS  PubMed  Google Scholar 

  59. Yamaguchi M, Mori S, Kato S (1988) Calcium-binding protein regucalcin is an activator (Ca2+–Mg2+)-adenosine triphosphatase in the plasma membranes of rat liver. Chem Pharm Bull (Tokyo) 36:3532–3539

    CAS  Google Scholar 

Download references

Funding

This study was supported in part by funds provided by the University of Hawaii Cancer Center and the B.H. and Alice C. Beams Endowed Professorship in Cancer Research from the John A. Burns School of Medicine (J.W.R.), and the Foundation for Biomedical Research on Regucalcin, Japan (M.Y.).

Author information

Authors and Affiliations

Authors

Contributions

MY conceived the study. MY designed, and MY, TM and JWR performed the experiments. All authors discussed the findings. MY wrote the manuscript, and all authors edited the manuscript. All authors read and approved the manuscript and agree to be accountable for all aspects of the research in ensuring that the accuracy or integrity of any part of the work are appropriately investigated and resolved.

Corresponding author

Correspondence to Masayoshi Yamaguchi.

Ethics declarations

Conflict of interest

All authors declare that they have no conflicts of interest.

Research involving human participants and/or animals

This article does not contain any studies with human participants or animals performed by any of the authors. All experimental protocols used databases or cell culture in vitro.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yamaguchi, M., Murata, T. & Ramos, J.W. The calcium channel agonist Bay K 8644 promotes the growth of human liver cancer HepG2 cells in vitro: suppression with overexpressed regucalcin. Mol Cell Biochem 472, 173–185 (2020). https://doi.org/10.1007/s11010-020-03795-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11010-020-03795-7

Keywords

Navigation