Skip to main content

Advertisement

Log in

Does habitat fragmentation affect landscape-level temperatures? A global analysis

  • Research Article
  • Published:
Landscape Ecology Aims and scope Submit manuscript

Abstract

Context

Habitat fragmentation per se (habitat subdivision independent of habitat loss) is a major driver of biodiversity change, potentially due to its impacts on climate. Habitat fragmentation may make landscapes hotter by increasing the amount of habitat edges, but can reduce landscape-level temperatures due to the “vegetation breeze” phenomenon. The plausibility of these two alternative hypotheses is unclear, as no study analyzed the effects of habitat fragmentation per se on temperature.

Objectives

We quantify, for the first time, the impacts of habitat fragmentation on landscape-level temperature across the globe.

Methods

We analyzed satellite data on forest cover and three climatic variables: mean daily temperature, albedo and evapotranspiration. The analyses were performed separately for tropical, temperate, and boreal regions. We compared the climatic variables between pairs of landscapes with similar amount of forest, but different levels of forest fragmentation (number of patches).

Results

Habitat fragmentation reduced landscape-level temperature in all climatic regions. The magnitude of this cooling was stronger in the tropics and weaker in the boreal region due to different evapotranspiration rates. This landscape-scale cooling contradicts local-scale studies, which have indicated that edge effects rise local temperatures. However, habitat fragmentation may intensify vegetation breeze, resulting in final cooling at the landscape scale.

Conclusions

Habitat fragmentation leads to colder landscapes. We propose a new conceptual model to unify local (edge-induced) and landscape-level effects of habitat fragmentation on temperature, advancing the understanding of the consequences of habitat fragmentation on climate globally.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Alkama S, Cescatti A (2016) Biophysical climate impacts of recent changes in global forest cover. Science 351:600–604

    Article  CAS  PubMed  Google Scholar 

  • Anderson RG, Canadell JG, Randerson JT, Jackson RB, Hungate BA, Baldocchi DD, Ban-Weiss GA, Bonan GB, Caldeira K, Cao L, Diffenbaugh NS, Gurney KR, Kueppers LM, Law BE, Luyssaert S, O’Halloran TL (2011) Biophysical considerations in forestry for climate protection. Front Ecol Environ 9:174–182

    Article  Google Scholar 

  • Arroyo-Rodríguez V, Saldaña-Vázquez RA, Fahrig L, Santos BA (2016) Does forest fragmentation cause an increase in forest temperature? Ecol Res 32:81–88

    Article  Google Scholar 

  • Avissar R, Liu Y (1996) Three-dimensional numerical study of shallow convective clouds and precipitation induced by land surface forcing. J Geophys Res 101:7499–7518

    Article  Google Scholar 

  • Avissar R, Schmidt T (1998) An evaluation of the scale at which ground-surface heat flux patchiness affects the convective boundary layer using large-eddy simulations. J Atmos Sci 55:2666–2689

    Article  Google Scholar 

  • Baldocchi D, Kelliher FM, Black TA, Jarvis P (2000) Climate and vegetation controls on boreal zone energy exchange. Global Change Biol 6:69–83

    Article  Google Scholar 

  • Barton K (2018) MuMIn: multi-model inference. R package version 1.40.4

  • Benali A, Carvalho AC, Nunes JP, Carvalhais N, Santos A (2012) Estimating air surface temperature in Portugal using MODIS LST data. Remote Sens Environ 124:108–121

    Article  Google Scholar 

  • Bernaschini ML, Trumper E, Valladares G, Salvo A (2019) Are all edges equal? Microclimatic conditions, geographical orientation and biological implications in a fragmented forest. Agric Ecosyst Environ 280:142–151

    Article  Google Scholar 

  • Bivand R, Keitt T, Rowlingson B, Pebesma E, Sumner M, Hijmans R, Rouault E, Warmerdam F, Ooms J, Rundel C (2018) rgdal: bindings for the ‘Geospatial’ Data Abstraction Library. R package version 1.3-3

  • Bonan GB (2008) Forests and climate change: forcings, feedbacks, and the climate benefits of forests. Science 320:1444–1449

    Article  CAS  PubMed  Google Scholar 

  • Burnham KP, Anderson DR (2002) Model selection and multimodel inference: a practical information-theoretical approach. Springer-Verlag, New York

    Google Scholar 

  • Chen B, Arain MA, Khomik M, Trofymow JA, Grant RF, Kurz WA, Yeluripati J, Wang Z (2013) Evaluating the impacts of climate variability and disturbance regimes on the historic carbon budget of a forest landscape. Agric Forest Meteorol 180:265–280

    Article  Google Scholar 

  • Chen J, Franklin TF, Spies TA (1995) Growing-season microclimatic gradients from clearcut edges into old-growth Douglas-fir forest. Ecol App 5:74–86

    Article  Google Scholar 

  • Chen J, Saunders SC, Crow TR, Naiman RJ, Brosofske KD, Mroz GD, Brookshire BL, Franklin JF (1999) Microclimate in forest ecosystem and landscape ecology—variations in local climate can be used to monitor and compare the effects of different management regimes. Bioscience 49:288–297

    Article  Google Scholar 

  • Cochrane MA, Laurance WF (2008) Synergisms among fire, land use, and climate change in the Amazon. Ambio 37:522–527

    Article  PubMed  Google Scholar 

  • Corlett RT (2014) Forest fragmentation and climate change. In: Kettle CJ, Koh LP (eds) Global forest fragmentation. CAB International, Wallingford, pp 69–78

    Chapter  Google Scholar 

  • Didham RK, Ewers RM (2014) Edge effects disrupt vertical stratification of microclimate in a temperate forest canopy. Pac Sci 68:493–508

    Article  Google Scholar 

  • Didham RK, Lawton JH (1999) Edge structure determines the magnitude of changes in microclimate and vegetation structure in tropical forest fragments. Biotropica 31:17–30

    Google Scholar 

  • Diniz-Filho JAF, Bini LM, Hawkins BA (2003) Spatial autocorrelation and red herrings in geographical ecology. Glob Ecol Biogeogr 12:53–64

    Article  Google Scholar 

  • Duveiller G, Hooker J, Cescatti A (2018) The mark of vegetation change on Earth’s surface energy balance. Nat Commun 9:679

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • EROS Us Geological Survey (1996) GTPO30 global digital elevation model. EROS Data Center, Sioux Falls

    Google Scholar 

  • Ewers RM, Didham RK (2006) Confounding factors in the detection of species responses to habitat fragmentation. Biol Rev 81:117–142

    Article  PubMed  Google Scholar 

  • Ewers RM, Marsh CJ, Wearn OR (2010) Making statistics biologically relevant in fragmented landscapes. Trends Ecol Evolut 25:699–704

    Article  Google Scholar 

  • Fahrig L (2003) Effects of habitat fragmentation on biodiversity. Annu Rev Ecol Evol Syst 34:487–515

    Article  Google Scholar 

  • Fahrig L (2017) Ecological responses to habitat fragmentation per se. Annu Rev Ecol Evol Syst 48:1–23

    Article  Google Scholar 

  • Fahrig L, Arroyo-Rodriguez V, Bennett J, Boucher-Lalonde V, Cazeta E, Currie D, Eigenbrod F, Ford A, Harrison S, Jaeger J, Koper N, Martin A, Martin JL, Metzger JP, Morrison P, Rhodes J, Saunders D, Simberloff D, Smith A, Tischendorf L, Vellend M, Watling J (2019) Is habitat fragmentation bad for biodiversity? Biol Cons 230:179–186

    Article  Google Scholar 

  • Fetcher N, Oberbauer SF, Strain BR (1985) Vegetation effects on microclimate in lowland tropical forest in Costa Rica. Int J Biometeorol 29:145–155

    Article  Google Scholar 

  • Fletcher RJ, Didham RK, Banks-Leite C, Barlow J, Ewers RM, Rosindell J, Holt RD, Gonzalez A, Pardini R, Damschen EI, Melo FPL, Ries L, Prevedello JA, Tscharntke T, Laurance WF, Lovejoy T, Haddad NM (2018) Is habitat fragmentation good for biodiversity? Biol Cons 226:9–15

    Article  Google Scholar 

  • Friedl MA, Sulla-Menashe D, Tan B, Schneider A, Ramankutty N, Sibley A, Huang XM (2010) MODIS Collection 5 global land cover: algorithm refinements and characterization of new datasets. Remote Sens Environ 144:168–182

    Article  Google Scholar 

  • Geiger R, Aron RH, Todhunter P (2003) The climate near the ground. Rowman and Littlefield Publishers, Lanham

    Google Scholar 

  • Grace JB (2006) Structural equation modeling and natural systems. Cambridge University Press, New York

    Book  Google Scholar 

  • Grace JB (2008) Structural equation modeling for observational studies. J Wildl Manag 72:14–22

    Article  Google Scholar 

  • Haddad NM, Brudvig LA, Clobert J, Davies KF, Gonzalez A, Holt RD, Lovejoy TE, Sexton JO, Austin MP, Collins CD, Cook WM, Damschen EI, Ewers RM, Foster BL, Jenkins CN, King AJ, Laurance WF, Levey DJ, Margules CR, Melbourne BA, Nicholls AO, Orrock JL, Song DX, Townshend JR (2015) Habitat fragmentation and its lasting impact on Earth’s ecosystems. Sci Adv 1:e1500052

    Article  PubMed  PubMed Central  Google Scholar 

  • Hansen MC, Potapov PV, Moore R, Hancher M, Turubanova SA, Tyukavina A, Thau D, Stehman SV, Goetz SJ, Loveland TR, Kommareddy A, Egorov A, Chini L, Justice CO, Townshend JRG (2013) High-resolution global maps of 21st-century forest cover change. Science 342:850–853

    Article  CAS  PubMed  Google Scholar 

  • Hansen MC, Stehman SV, Potapov PV (2010) Quantification of global gross forest cover loss. PNAS 19:8650–8655

    Article  Google Scholar 

  • Hennenberg KJ, Goetze D, Szarzynski J, Orthmann B, Reineking B, Steinke I, Porembski S (2008) Detection of seasonal variability in microclimatic borders and ecotones between forest and savanna. Basic Appl Ecology 9:275–285

    Article  Google Scholar 

  • Hijmans RJ, Etten J, Sumner M, Cheng J, Bevan A, Bivand R, Busetto L, Canty M, Forrest D, Ghosh A, Golicher D, Gray J, Greenberg JA, Hiemstra P, Hingee K, Karney C, Mattiuzzi M, Mosher S, Nowosad J, Pebesma E, Lamigueiro OP, Racine EB, Rowlingson B, Shortridge A, Venables B, Wueest R (2017) raster: geographic data analysis and modeling. R package version 2.6-7

  • Hofmeister J, Hošek J, Brabec M, Střalková R, Mýlová P, Bouda M, Pettit JL, Rydval M, Svoboda M (2019) Microclimate edge effect in small fragments of temperate forests in the context of climate change. For Ecol Manage 448:48–56

    Article  Google Scholar 

  • Jackson RB, Randerson JT, Canadell JG, Anderson RG, Avissar R, Baldocchi DD, Bonan GB, Caldeira K, Diffenbaugh NS, Field CB, Hungate BA, Jobbágy EG, Kueppers LM, Nosetto MD, Pataki DE (2008) Protecting climate with forests. Environ Res Lett 3:044006

    Article  Google Scholar 

  • Jin M, Dickinson RE (2010) Land surface skin temperature climatology: benefitting from the strengths of satellite observations. Environ Res Lett 5:044004

    Article  Google Scholar 

  • Kapos V (1989) Effects of isolation on the water status of forest patches in the Brazilian Amazon. J Trop Ecol 5:173–185

    Article  Google Scholar 

  • Kerbauy GB (2004) Plant Physiology. Guanabara Koogan, Rio de Janeiro

    Google Scholar 

  • Lafortezza R, Coomes DA, Kapos V, Ewers RM (2010) Assessing the impacts of forest fragmentation in New Zealand: scaling from survey plots to landscapes. Glob Ecol Biogeogr 19:741–754

    Google Scholar 

  • Latimer CE, Zuckerberg B (2016) Forest fragmentation alters winter microclimates and microrefugia in human-modified landscapes. Ecography 40:158–170

    Article  Google Scholar 

  • Laurance WF, Laurance SG, Delamonica P (1998) Tropical forest fragmentation and greenhouse gas emissions. For Ecol Manage 110:173–180

    Article  Google Scholar 

  • Legendre P (1993) Spatial autocorrelation: trouble or new paradigm? Ecology 74:1659–1673

    Article  Google Scholar 

  • Li ZL, Tang BH, Wu H (2013) Satellite-derived land surface temperature: current status and perspectives. Remote Sens Environ 131:14–37

    Article  Google Scholar 

  • Li Y, Zhao M, Mildrexler DJ, Motesharrei S, Mu K, Kalnay E, Zhao F, Li S, Wang K (2016) Potential and actual impacts of deforestation and afforestation on land surface temperature. J Geophys Res-Atmos 121:14372–14386

    Article  Google Scholar 

  • Li Y, Zhao M, Motesharrei S, Mu K, Kalnay E, Li S (2015) Local cooling and warming effects of forests based on satellite observations. Nat Commun 6:6603

    Article  CAS  PubMed  Google Scholar 

  • Liang QL (2012) Global land surface products: albedo product data collection (1985–2010). Beijing Normal University, Beijing

    Google Scholar 

  • Liu NF, Liu Q, Wang LZ, Liang SL, Wen JG, Qu Y, Liu SH (2013) A statistics-based temporal filter algorithm to map spatiotemporally continuous shortwave albedo from MODIS data. Hydrol Earth Syst Sci 17:2121–2129

    Article  Google Scholar 

  • Liu Q, Wang L, Qu Y, Liu N, Liu S, Tang H, Liang S (2013) Preliminary evaluation of the long-term GLASS albedo product. Int J Digit Earth 6:69–95

    Article  Google Scholar 

  • Magnano LFS, Rocha MF, Meyer L, Martins SV, Meira-Neto JAA (2015) Microclimatic conditions at forest edges have significant impacts on vegetation structure in large Atlantic forest fragments. Biodivers Conserv 24:2305–2318

    Article  Google Scholar 

  • Malcolm JR (1994) Edge effects of central Amazonian forest fragments. Ecology 75:2438–2445

    Article  Google Scholar 

  • Matlack GR (1993) Microenvironment variation within and among forest edge sites in the eastern United States. Biol Conserv 66:185–194

    Article  Google Scholar 

  • McGarigal K, Cushman SA (2002) Comparative evaluation of experimental approaches to the study of habitat fragmentation effects. Ecol Appl 12:335–345

    Article  Google Scholar 

  • Miliaresis GC, Argialas DP (2002) Quantitative representation of mountain objects extracted from the global digital elevation model (GTOPO30). Int J Remote Sens 23:949–964

    Article  Google Scholar 

  • Molen MK, Dolman AJ, Ciais P, Eglin T, Gobron N, Law BE, Meir P, Peters W, Phillips OL, Reichstein M, Chen T, Dekker SC, Doubková M, Friedl MA, Jung M, Hurk BJJM, Jeu RAM, Kruijt B, Ohta T, Rebel KT, Plummer S, Seneviratne SI, Sitch S, Teuling AJ, Werf GR, Wang G (2011) Drought and ecosystem carbon cycling. Agr Forest Meteorol 151:765–773

    Article  Google Scholar 

  • Mu Q, Zhao M, Running SW (2011) Improvements to a MODIS global terrestrial evapotranspiration algorithm. Remote Sens Environ 115:1781–1800

    Article  Google Scholar 

  • Murcia C (1995) Edge effects in fragmented forests: implications for conservation. TREE 10:58–62

    CAS  PubMed  Google Scholar 

  • NASA EOSDIS Land Processes Distributed Active Archive Center (LP DAAC) (2007) USGS/Earth Resources Observation and Science (EROS) Center, Sioux Falls, South Dakota. Available from: https://doi.org/10.5067/modis/mod16a3.006

  • Novacek MJ, Cleland EE (2001) The current biodiversity extinction event: scenarios for mitigation and recovery. Proc Natl Acad Sci USA 98:5466–5470

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nowakowski AJ, Frishkoff LO, Agha M, Todd BD, Scheffers BR (2018) Changing thermal landscapes: merging climate science and landscape ecology through thermal biology. Curr Landsc Ecol Rep 3:57–72

    Article  Google Scholar 

  • Peng S, Piao S, Zeng Z, Ciais P, Zhou L, Li LZX, Myneni RB, Yin Y, Zeng H (2013) Afforestation in China cools local land surface temperature. Proc Natl Acad Sci USA 111:2915–2919

    Article  CAS  Google Scholar 

  • Pinheiro J, Bates D, DebRoy S, Sarkar D, Heisterkamp S, Willigen BV (2018) nlme: Linear and nonlinear mixed effects models. R package version 3.1-137

  • Pohlman CL, Turton SM, Goosem M (2007) Edge effects of linear canopy openings on tropical rain forest understory microclimate. Biotropica 39:62–71

    Article  Google Scholar 

  • Prevedello JA, Winck GR, Weber MM, Nichols E, Sinervo B (2019) Impacts of forestation and deforestation on local temperature across the globe. PLoS ONE 14:e0213368

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Development Core Team R (2017) A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna

    Google Scholar 

  • Ranney JW, Bruner MC, Levenson JB (1981) The importance of edge in the structure and dynamics of forest islands. In: Burguess RL, Sharpe DM (eds) Forest island dynamics in man-dominated landscapes. Springer, New York, pp 67–95

    Chapter  Google Scholar 

  • Robinson GR, Holt RD, Gaines MS, Hamburg SP, Johnson ML, Fitch HS, Martinko EA (1992) Diverse and contrasting effects of habitat fragmentation. Science 257:524–526

    Article  CAS  PubMed  Google Scholar 

  • Rosseel Y, Jorgensen TD, Oberski D, Byrnes J, Vanbrabant L, Savalei V, Merkle E, Hallquist M, Rhemtulla M, Katsikatsou M, Barendse M, Scharf F (2018) lavaan: latent variable analysis. R package version 0.6-1

  • Running SW, Mu Q, Zhao M, Moreno A (2017) User’s Guide - MODIS Global Terrestrial Evapotranspiration (ET) Product (NASA MOD16A2/A3) NASA Earth Observing System MODIS Land Algorithm. MODIS Land Team, Version 1.5, Collection 6. NASA EOSDIS Land Processes DAAC, 35 p

  • Saunders SC, Chen J, Drummer TD, Crow TR (1999) Modeling temperature gradients across edges over time in a managed landscape. For Ecol Manage 117:17–31

    Article  Google Scholar 

  • Schultz NM, Lawrence PJ, Lee X (2017) Global satellite data highlights the diurnal asymmetry of the surface temperature response to deforestation. J Geophys Res-Biogeosci 122:903–917

    Article  Google Scholar 

  • Seyler F, Muller F, Cochonneau G, Guimarães L, Guyot JL (2009) Watershed delineation for the Amazon sub-basin system using GTOPO30 DEM and a drainage network extracted from JERS SAR images. Hydrol Process 23:3173–3185

    Article  Google Scholar 

  • Snyder PK, Delire C, Foley JA (2004) Evaluating the influence of different vegetation biomes on the global climate. Clim Dyn 23:279–302

    Article  Google Scholar 

  • Tropek R, Sedlácek O, Beck J, Keil P, Musilová Z, Šímová I, Storch D (2014) Comment on “High-resolution global maps of 21st-century forest cover change”. Science 344:981

    Article  CAS  PubMed  Google Scholar 

  • Tuff KT, Tuff T, Davies KF (2016) A framework for integrating thermal biology into fragmentation research. Ecol Lett 19:361–374

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turner MG, Gardner RG, O’Neill RV (2001) Landscape ecology in theory and practice: pattern and process. Springer, New York

    Google Scholar 

  • Wallenius T, Niskanen L, Virtanen T, Hottola J, Brumelis G, Angervuori A, Julkunen J, Pihlström M (2010) Loss of habitats, naturalness and species diversity in Eurasian forest landscapes. Ecol Indic 10:1093–1101

    Article  Google Scholar 

  • Wan Z (2008) New refinements and validation of the MODIS land-surface. Remote Sens Environ 112:59–74

    Article  Google Scholar 

  • West PC, Narisma GT, Barford CC, Kucharik CJ, Foley JA (2010) An alternative approach for quantifying climate regulation by ecosystems. Front Ecol Environ 9:126–133

    Article  Google Scholar 

  • Wickham H (2017a) reshape: flexibly reshape data. R package version 0.8.7

  • Wickham H (2017b) scales: scale functions for visualization. R package version 0.5.0

  • Williams JJ, Newbold T (2020) Local climatic changes affect biodiversity responses to land use: a review. Divers Distrib 26:76–92

    Article  Google Scholar 

  • Williams-Linera G (1990) Vegetation structure and environmental conditions of forest edges in Panama. J Ecol 78:356–373

    Article  Google Scholar 

  • Wilson MC, Chen X, Corlett RT, Didham RK, Ding P, Holt RD, Holyoak M, Hu G, Hughes AC, Jiang L, Laurance WF, Liu J, Pimm SL, Robinson SK, Russo SE, Si X, Wilcove DS, Wu J, Yu M (2016) Habitat fragmentation and biodiversity conservation: key findings and future challenges. Landsc Ecol 31:219–227

    Article  Google Scholar 

  • Yan M, Zhong Z, Liu J (2007) Habitat fragmentation impacts on biodiversity of evergreen broadleaved forests in Jinyun Mountains, China. Front Biol China 2:62–68

    Article  Google Scholar 

  • Young A, Mitchell N (1994) Microclimate and vegetation edge effects in fragmented podocarp-broadleaf forest in New Zealand. Biol Conserv 67:63–72

    Article  Google Scholar 

  • Zhan X, Kustas WP, Humes KS (1996) An intercomparison study on models of sensible heat flux over partial canopy surfaces with remotely sensed surface temperature. Remote Sens Environ 58:242–256

    Article  Google Scholar 

  • Zhao K, Jackson RB (2014) Biophysical forcings of land-use changes from potential forestry activities in North America. Ecol Monogr 84:329–353

    Article  Google Scholar 

  • Zuur A, Ieno EN, Walker NJ, Saveliev AA, Smith GM (2009) Mixed effects models and extensions in ecology with R. In: Gail RM, Krickeberg K, Samat JM, Tsiatis A, Wong W (eds) Statistics for biology and health. Springer, New York, pp 938–939

    Google Scholar 

Download references

Acknowledgements

We wish to thank Bruno Henrique Pimentel Rosado, Heitor Evangelista da Silva and Maria Lucia Lorini for constructive comments on the manuscript. We also thank Leonardo de Almeida Ramos for helping us with the figures.

Funding

This study was financed by the Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - Brasil (CAPES) - Finance Code 001, Fundação Carlos Chagas Filho de Amparo à Pesquisa do Estado do Rio de Janeiro (Processes No. E-26/010.002334/2016 and E-26/010.000398/2016), and Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq; process n. 424061/2016-3).

Author information

Authors and Affiliations

Authors

Contributions

All authors contributed to the study conception and design. Material preparation, data collection and analysis were performed by Clarice B. Mendes and Jayme A. Prevedello. The first draft of the manuscript was written by Clarice B. Mendes and all authors commented on previous versions of the manuscript. All authors read and approved the final manuscript.

Corresponding author

Correspondence to Clarice B. Mendes.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 720 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, C.B., Prevedello, J.A. Does habitat fragmentation affect landscape-level temperatures? A global analysis. Landscape Ecol 35, 1743–1756 (2020). https://doi.org/10.1007/s10980-020-01041-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10980-020-01041-5

Keywords

Navigation