Skip to main content
Log in

Atomic layer deposition of MoO3 on mesoporous γ-Al2O3 prepared by sol–gel method as efficient catalyst for oxidative desulfurization of refractory dibenzothiophene compound

  • Original Paper: Sol–gel and hybrid materials for catalytic, photoelectrochemical and sensor applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

MoOx/Al2O3 based catalyst has long been widely used as an active catalyst in Oxidative Desulfurization reaction due to its high stability under severe reaction conditions and high resistance to sulfur poisoning. In this context, 4 and 9 Wt.% MoO3 grafted on mesoporous γ-Al2O3 has been synthesized using the modified atomic layer deposition (ALD) method. Another MoO3/Al2O3 sample was prepared by the conventional wetness impregnation (IM) method, for comparison. The effect of the preparation methods on the metal–support interaction was evaluated using different characterization techniques; including X-ray diffraction, X-ray photoelectron spectroscopy (XPS), N2-physisorption, transmission electron microscopy (TEM), H2-temperature-programmed reduction, and FT-IR. Oxidative desulfurization (ODS) reaction of the model fuel oil was used as a probe reaction to examine the catalytic efficiency of the prepared catalysts. ALD method led to samples with much better physicochemical properties than those of the prepared one via the impregnation method. However, the 9 Wt.% MoO3/Al2O3 (ALD) catalyst in the ODS reaction of model fuel oil shows remarkable catalytic performance with ~80%, which has been attributed to the more Mo6+ surface concentrations relative to Al3+ with large pore diameter and surface area. The kinetic study shows that the ODS of DBT follows a pseudo-first-order rate reaction.

Highlights

  • 4 & 9 wt% MoO3 oxides have been deposited on the surfaces of γ-Al2O3 by the modified atomic layer deposition (ALD) method.

  • Another 9 wt% MoO3 oxide supported γ-Al2O3 had been prepared by conventional wetness impregnation method for comparison.

  • The physicochemical and morphological properties were assessed comparatively.

  • The catalytic performances of the differently prepared xMoO3/γ-Al2O3 catalysts towards oxidative desulfurization of refractory dibenzothiophene compound were evaluated.

  • With ~80% DBT removal from the model oil; 9 wt%MoO3/Al2O3(ALD) catalyst exhibited enhanced ODS efficiency removal and the sulfur content was wiped out from 500 to 116 ppmS at optimal condition: (catalyst) = 7 g/L, O/S = 6, T = 70 °C at 150 min and acetonitrile as an extracting solvent.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Seredych M, Bandosz TJ (2010) Adsorption of dibenzothiophenes on activated carbons with copper and iron deposited on their surfaces. Fuel Process Technol 91:693–701. https://doi.org/10.1016/J.FUPROC.2010.01.019

    Article  CAS  Google Scholar 

  2. Zhang J, Zhao D, Wang J, Yang L (2009) Photocatalytic oxidation of dibenzothiophene using TiO2/bamboo charcoal. J Mater Sci 44:3112–3117. https://doi.org/10.1007/s10853-009-3413-z

    Article  CAS  Google Scholar 

  3. Stanislaus A, Marafi A, Rana MS (2010) Recent advances in the science and technology of ultra low sulfur diesel (ULSD) production. Catal Today 153:1–68. https://doi.org/10.1016/J.CATTOD.2010.05.011

    Article  CAS  Google Scholar 

  4. Lü H, Deng C, Ren W, Yang X (2014) Oxidative desulfurization of model diesel using [(C4H9)4N]6Mo7O24 as a catalyst in ionic liquids. Fuel Process Technol 119:87–91. https://doi.org/10.1016/J.FUPROC.2013.10.023

    Article  Google Scholar 

  5. Venkateshwar Rao T, Sain B, Kafola S, Ram Nautiyal B, Kumar Sharma Y, Madhusudan Nanoti S, Omkarnath Garg M (2007) Oxidative desulfurization of HDS diesel using the aldehyde/molecular oxygen oxidation system. Energy Fuels 21:3420–3424. https://doi.org/10.1021/ef700245g

    Article  CAS  Google Scholar 

  6. Wan Abu Bakar WA (2015) The role of molybdenum oxide based catalysts on oxidative desulfurization of diesel fuel. Mod Chem Appl 03. https://doi.org/10.4172/2329-6798.1000150

  7. Mahdavi V, Mardani M (2015) Preparation of manganese oxide immobilized on SBA-15 by atomic layer deposition as an efficient and reusable catalyst for selective oxidation of benzyl alcohol in the liquid phase. Mater Chem Phys 155:136–146. https://doi.org/10.1016/J.MATCHEMPHYS.2015.02.011

    Article  CAS  Google Scholar 

  8. Shylesh S, Singh AP (2004) Synthesis, characterization, and catalytic activity of vanadium- incorporated, -grafted, and -immobilized mesoporous MCM-41 in the oxidation of aromatics. J Catal 228:333–346. https://doi.org/10.1016/j.jcat.2004.08.037

    Article  CAS  Google Scholar 

  9. Kumar GS, Palanichamy M, Hartmann M, Murugesan V (2008) A new route for the synthesis of manganese incorporated SBA-15. Microporous Mesoporous Mater 112:53–60. https://doi.org/10.1016/J.MICROMESO.2007.09.012

    Article  CAS  Google Scholar 

  10. Du G, Lim S, Pinault M, Wang C, Fang F, Pfefferle L, Haller GL (2008) Synthesis, characterization, and catalytic performance of highly dispersed vanadium grafted SBA-15 catalyst. J Catal 253:74–90. https://doi.org/10.1016/J.JCAT.2007.10.019

    Article  CAS  Google Scholar 

  11. Baltes M, Cassiers K, Van Der Voort P, Weckhuysen B, Schoonheydt R, Vansant E (2001) MCM-48-supported vanadium oxide catalysts, prepared by the molecular designed dispersion of VO(acac)2: a detailed study of the highly reactive MCM-48 surface and the structure and activity of the deposited VOx. J Catal 197:160–171. https://doi.org/10.1006/JCAT.2000.3066

    Article  CAS  Google Scholar 

  12. Mogica-Betancourt JC, López-Benítez A, Montiel-López JR, Massin L, Aouine M, Vrinat M, Berhault G, Guevara-Lara A (2014) Interaction effects of nickel polyoxotungstate with the Al2O3–MgO support for application in dibenzothiophene hydrodesulfurization. J Catal 313:9–23. https://doi.org/10.1016/J.JCAT.2014.02.009

    Article  CAS  Google Scholar 

  13. Herrera JE, Kwak JH, Hu JZ, Wang Y, Peden CHF, Macht J, Iglesia E (2006) Synthesis, characterization, and catalytic function of novel highly dispersed tungsten oxide catalysts on mesoporous silica. J Catal 239:200–211. https://doi.org/10.1016/J.JCAT.2006.01.034

    Article  CAS  Google Scholar 

  14. Andevary HH, Akbari A, Omidkhah M (2019) High efficient and selective oxidative desulfurization of diesel fuel using dual-function [Omim]FeCl4 as catalyst/extractant. Fuel Process Technol 185:8–17. https://doi.org/10.1016/J.FUPROC.2018.11.014

    Article  CAS  Google Scholar 

  15. Said S, Mikhail S, Riad M (2019) Recent progress in preparations and applications of meso-porous alumina. Mater Sci Energy Technol 2:288–297. https://doi.org/10.1016/j.mset.2019.02.005

    Article  Google Scholar 

  16. Umbarkar SB, Biradar AV, Mathew SM, Shelke SB, Malshe KM, Patil PT, Dagde SP, Niphadkar SP, Dongare MK (2006) Vapor phase nitration of benzene using mesoporous MoO3/SiO 2 solid acid catalyst. Green Chem 8:488–493. https://doi.org/10.1039/b600094k

    Article  CAS  Google Scholar 

  17. Mizushima T, Fukushima K, Ohkita H, Kakuta N (2007) Synthesis of β-MoO3 through evaporation of HNO3-added molybdic acid solution and its catalytic performance in partial oxidation of methanol. Appl Catal A Gen 326:106–112. https://doi.org/10.1016/J.APCATA.2007.04.006

    Article  CAS  Google Scholar 

  18. Reddy BM, Chowdhury B, Smirniotis PG (2001) An XPS study of the dispersion of MoO3 on TiO2–ZrO2, TiO2–SiO2, TiO2–Al2O3, SiO2–ZrO2, and SiO2–TiO2–ZrO2 mixed oxides. Appl Catal A Gen 211:19–30. https://doi.org/10.1016/S0926-860X(00)00834-6

    Article  CAS  Google Scholar 

  19. Zhang L, Hu J-S, Huang X-H, Song J, Lu S-Y (2018) Particle-in-box nanostructured materials created via spatially confined pyrolysis as high performance bifunctional catalysts for electrochemical overall water splitting. Nano Energy 48:489–499. https://doi.org/10.1016/J.NANOEN.2018.04.003

    Article  CAS  Google Scholar 

  20. Li J, Fang J, Gao L, Zhang J, Ruan X, Xu A, Li X (2017) Graphitic carbon nitride induced activity enhancement of OMS-2 catalyst for pollutants degradation with peroxymonosulfate. Appl Surf Sci 402:352–359. https://doi.org/10.1016/J.APSUSC.2017.01.129

    Article  CAS  Google Scholar 

  21. Fang J, Shi F, Bu J, Ding J, Xu S, Bao J, Ma Y, Jiang Z, Zhang W, Gao C, Huang W (2010) One-step synthesis of bifunctional TiO2 catalysts and their photocatalytic activity. J Phys Chem C 114:7940–7948. https://doi.org/10.1021/jp100519q

    Article  CAS  Google Scholar 

  22. Qiu L, Xu G (2010) Peak overlaps and corresponding solutions in the X-ray photoelectron spectroscopic study of hydrodesulfurization catalysts. Appl Surf Sci 256:3413–3417. https://doi.org/10.1016/J.APSUSC.2009.12.043

    Article  CAS  Google Scholar 

  23. Elmasides C, Kondarides DI, Grünert W, Verykios XE (1999) XPS and FTIR study of Ru/Al2O3 and Ru/TiO2 catalysts: reduction characteristics and interaction with a methane–oxygen mixture. J Phys Chem B 103:5227–5239. https://doi.org/10.1021/jp9842291

    Article  CAS  Google Scholar 

  24. Said S, Riad M (2019) Oxidation of benzyl alcohol through eco-friendly processes using Fe-doped cryptomelane catalysts. Solid State Sci. https://doi.org/10.1016/j.solidstatesciences.2019.05.020

  25. Said S, Zaky MagdyT (2019) Pt/SAPO-11 catalysts: effect of platinum loading method on the hydroisomerization of n-hexadecane. Catal Lett 149:2119–2131. https://doi.org/10.1007/s10562-019-02783-x

    Article  CAS  Google Scholar 

  26. Said S (2018) Synthesis and functionalization of ordered mesoporous carbons supported Pt nanoparticles for hydroconversion of n-heptane. N J Chem 42:14517–14529. https://doi.org/10.1039/c8nj02786b

    Article  CAS  Google Scholar 

  27. Shen L, Hu C, Sakka Y, Huang Q (2012) Study of phase transformation behaviour of alumina through precipitation method. J Phys D Appl Phys 45:215302. https://doi.org/10.1088/0022-3727/45/21/215302

    Article  CAS  Google Scholar 

  28. Klinbumrung A, Thongtem T, Thongtem S (2012) Characterization of orthorhombic α-MoO 3 microplates produced by a microwave plasma process. J Nanomater. 2012. https://doi.org/10.1155/2012/930763

  29. Dhanasankar M, Purushothaman KK, Muralidharan G (2011) Effect of temperature of annealing on optical, structural and electrochromic properties of sol–gel dip coated molybdenum oxide films. Appl Surf Sci 257:2074–2079. https://doi.org/10.1016/J.APSUSC.2010.09.052

    Article  CAS  Google Scholar 

  30. He T, Yao J (2003) Photochromism of molybdenum oxide. J Photochem Photobiol C Photochem Rev 4:125–143. https://doi.org/10.1016/S1389-5567(03)00025-X

    Article  CAS  Google Scholar 

  31. Del Gallo P, Meunier F, Pham-Huu C, Crouzet C, Ledoux MJ (1997) Selective n-butane Isomerization over High specific surface area MoO3-carbon-modified catalyst. Ind Eng Chem Res 36:4166–4175. https://doi.org/10.1021/ie9700728

    Article  CAS  Google Scholar 

  32. Lou Y, Wang H, Zhang Q, Wang Y (2007) SBA-15-supported molybdenum oxides as efficient catalysts for selective oxidation of ethane to formaldehyde and acetaldehyde by oxygen. J Catal 247:245–255. https://doi.org/10.1016/J.JCAT.2007.02.011

    Article  CAS  Google Scholar 

  33. Kumar M, Aberuagba F, Gupta J, Rawat K, Sharma L, Murali Dhar G (2004) Temperature-programmed reduction and acidic properties of molybdenum supported on MgO–Al2O3 and their correlation with catalytic activity J Mol Catal A Chem 213:217–223. https://doi.org/10.1016/J.MOLCATA.2003.12.005

    Article  CAS  Google Scholar 

  34. Alvarez-Amparán MA, Guillén-Aguilar D, Cedeño-Caero L (2020) MoWFe based catalysts to the oxidative desulfurization of refractory dibenzothiophene compounds: Fe promoting the catalytic performance. Fuel Process Technol 198:106233. https://doi.org/10.1016/j.fuproc.2019.106233

    Article  CAS  Google Scholar 

  35. Kong L, Li J, Zhao Z, Liu Q, Sun Q, Liu J, Wei Y (2016) Oxidative dehydrogenation of ethane to ethylene over Mo-incorporated mesoporous SBA-16 catalysts: the effect of MoOx dispersion. Appl Catal A Gen 510:84–97. https://doi.org/10.1016/J.APCATA.2015.11.016

    Article  CAS  Google Scholar 

  36. Cedeño-Caero L, Alvarez-Amparan MA (2014) Performance of molybdenum oxide in spent hydrodesulfurization catalysts applied on the oxidative desulfurization process of dibenzothiophene compounds. React Kinet Mech Catal 113:115–131. https://doi.org/10.1007/s11144-014-0729-8

    Article  CAS  Google Scholar 

  37. Andevary HH, Akbari A, Omidkhah M (2019) High efficient and selective oxidative desulfurization of diesel fuel using dual-function [Omim]FeCl4 as catalyst/extractant. Fuel Process Technol 185:8–17. https://doi.org/10.1016/J.FUPROC.2018.11.014

    Article  CAS  Google Scholar 

  38. Safa MA, Al-Shamary T, Al-Majren R, Bouresli R, Ma X (2017) Reactivities of various alkyl dibenzothiophenes in oxidative desulfurization of middle distillate with cumene hydroperoxide. Energy Fuels 31:7464–7470. https://doi.org/10.1021/acs.energyfuels.7b01272

    Article  CAS  Google Scholar 

  39. Ishihara A, Wang D, Dumeignil F, Amano H, Qian EW, Kabe T (2005) Oxidative desulfurization and denitrogenation of a light gas oil using an oxidation/adsorption continuous flow process. Appl Catal A Gen 279:279–287. https://doi.org/10.1016/J.APCATA.2004.10.037

    Article  CAS  Google Scholar 

  40. Abdelrahman AA, Betiha MA, Rabie AM, Ahmed HS, Elshahat MF (2018) Removal of refractory Organo‑sulfur compounds using an efficient and recyclable {Mo132} nanoball supported graphene oxide. J Mol Liq 252:121–132. https://doi.org/10.1016/J.MOLLIQ.2017.12.124

    Article  CAS  Google Scholar 

  41. Flores R, Rodas A, Gasperin R (2019) Oxidative desulfurization of diesel fuel oil using supported Fenton catalysts and assisted with ultrasonic energy. Pet Sci 16:1176–1184. https://doi.org/10.1007/s12182-019-0349-z

    Article  CAS  Google Scholar 

  42. Qiu J, Wang G, Zhang Y, Zeng D, Chen Y (2015) Direct synthesis of mesoporous H3PMo12O40/SiO2 and its catalytic performance in oxidative desulfurization of fuel oil. Fuel 147:195–202. https://doi.org/10.1016/J.FUEL.2015.01.064

    Article  CAS  Google Scholar 

  43. Zuo M, Huang X, Li J, Chang Q, Duan Y, Yan L, Xiao Z, Mei S, Lu S, Yao Y (2019) Oxidative desulfurization in diesel: via a titanium dioxide triggered thermocatalytic mechanism. Catal Sci Technol 9:2923–2930. https://doi.org/10.1039/c9cy00298g

    Article  CAS  Google Scholar 

  44. Abdullah WNW, Ali R, Bakar WAWA (2016) In depth investigation of Fe/MoO3–PO4/Al2O3 catalyst in oxidative desulfurization of Malaysian diesel with TBHP-DMF system. J Taiwan Inst Chem Eng 58:344–350. https://doi.org/10.1016/J.JTICE.2015.06.001

    Article  CAS  Google Scholar 

  45. Qiu L, Cheng Y, Yang C, Zeng G, Long Z, Wei S, Zhao K, Luo L (2016) Oxidative desulfurization of dibenzothiophene using a catalyst of molybdenum supported on modified medicinal stone. RSC Adv 6:17036–17045. https://doi.org/10.1039/c5ra23077b

    Article  CAS  Google Scholar 

  46. Ma C, Dai B, Liu P, Zhou N, Shi A, Ban L, Chen H (2014) Deep oxidative desulfurization of model fuel using ozone generated by dielectric barrier discharge plasma combined with ionic liquid extraction. J Ind Eng Chem 20:2769–2774. https://doi.org/10.1016/J.JIEC.2013.11.005

    Article  Google Scholar 

  47. Choi AES, Roces S, Dugos N, Wan M-W (2016) Oxidation by H2O2 of bezothiophene and dibenzothiophene over different polyoxometalate catalysts in the frame of ultrasound and mixing assisted oxidative desulfurization. Fuel 180:127–136. https://doi.org/10.1016/J.FUEL.2016.04.014

    Article  CAS  Google Scholar 

  48. Tian Y, Yao Y, Zhi Y, Yan L, Lu S (2015) Combined extraction–oxidation system for oxidative desulfurization (ODS) of a model fuel. Energy Fuels 29:618–625. https://doi.org/10.1021/ef502396b

    Article  CAS  Google Scholar 

  49. Alvarez-Amparán MA, Cedeño-Caero L (2017) MoOx-VOx based catalysts for the oxidative desulfurization of refractory compounds: influence of MoOx-VOx interaction on the catalytic performance. Catal Today 282:133–139. https://doi.org/10.1016/J.CATTOD.2016.07.002

    Article  Google Scholar 

Download references

Acknowledgements

This research was supported by the Egyptian Petroleum Research Institute.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Said.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Said, S., Abdelrahman, A.A. Atomic layer deposition of MoO3 on mesoporous γ-Al2O3 prepared by sol–gel method as efficient catalyst for oxidative desulfurization of refractory dibenzothiophene compound. J Sol-Gel Sci Technol 95, 308–320 (2020). https://doi.org/10.1007/s10971-020-05332-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05332-w

Keywords

Navigation