Skip to main content
Log in

A green and cost-effective surfactant-assisted synthesis of SAPO-34 using dual microporous templates with improved performance in MTO reaction

  • Original Paper: Characterization methods of sol-gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

The SAPO-34 catalysts were successfully synthesized with different amounts of a cheap and green nonionic surfactant (Triton X-100) as a mesoporogen additive and MOR/TEAOH as microporous mixed templates. The prepared samples were characterized and tested in the methanol to olefins (MTO) reaction under the industrial feed composition of 72 wt% methanol in water. The results revealed that the surfactant concentration affects the acidity, particle size, and textural properties which results in different catalytic performances. The sample prepared with the surfactant molar ratio of 0.02 exhibits a 12% improvement in the light olefins selectivity (90%) as well as the longer catalyst lifetime (more than 330 min) compared to the parent one (79.3% selectivity and 260 min lifetime). This could be attributed to the high crystallinity, smaller crystallite size, proper lower acidity, higher surface area, and the facilitation of reactants and product transportation through mesoporosity created in the structure of crystals.

Hierarchical SAPO-34 molecular sieve was synthesized with different amounts of triton X-100 (0, 0.02, 0.04, and 0.06) as a green and cost-effective surfactant. The catalytic performance of samples carried out under industrial feed composition (72 wt% MeOH in water). The SP-34 (0.02) sample prepared with 0.02 molar ratio of triton X-100/Al2O3 showed the best performance among all the catalysts (90% total light olefins and more than 330 min lifetime).

Highlights

  • SAPO-34 molecular sieve was synthesized with a new and cost-effective surfactant (Triton X-100) as a green route.

  • Catalytic performance was carried out under severe feed composition (72 wt% methanol in water) which is close to industrial conditions.

  • The sample SP-34 (0.02) showed a promising performance for MTO reaction with 90% total olefins selectivity and more than 330 min lifespan.

  • Compared with the best catalyst synthesized with TX-100 by Rami et al. (Synthesis and characterization of a nano-sized hierarchical porous AuSAPO-34 catalyst for MTO reaction: Special insight on the influence of TX-100 as a cheap and green surfactant, 2019), SP-34 (0.02) showed more than 12% improvement in the catalyst lifetime with comparable olefins selectivity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Sedighi M, Bahrami H, Darian JT (2014) Thorough investigation of varying template combinations on SAPO-34 synthesis, catalytic activity and stability in the methanol conversion to light olefin. RSC Adv 4(91):49762–49769

    CAS  Google Scholar 

  2. Masoumi S, Towfighi J, Mohamadalizadeh A, Kooshki Z, Rahimi K (2015) Tri-templates synthesis of SAPO-34 and its performance in MTO reaction by statistical design of experiments. Appl Catal A Gen 493:103–111

    CAS  Google Scholar 

  3. Obrzut DL, Adekkanattu PM, Thundimadathil J, Liu J, Dubois DR, Guin JA (2003) Reducing methane formation in methanol to olefins reaction on metal impregnated SAPO-34 molecular sieve. React Kinet Catal Lett 80(1):113–121

    CAS  Google Scholar 

  4. Popova M, Minchev C, Kanazirev V (1998) Methanol conversion to light alkenes over SAPO-34 molecular sieves synthesized using various sources of silicon and aluminium. Appl Catal A Gen 169(2):227–235

    CAS  Google Scholar 

  5. Sun Q, Wang N, Xi D, Yang M, Yu J (2014) Organosilane surfactant-directed synthesis of hierarchical porous SAPO-34 catalysts with excellent MTO performance. Chem Commun 50(49):6502–6505

    CAS  Google Scholar 

  6. Wang C, Yang M, Tian P, Xu S, Yang Y, Wang D, Yuan Y, Liu Z (2015) Dual template-directed synthesis of SAPO-34 nanosheet assemblies with improved stability in the methanol to olefins reaction. J Mate Chem A 3(10):5608–5616

    CAS  Google Scholar 

  7. Epelde E, Ibáñez M, Valecillos J, Aguayo AT, Gayubo AG, Bilbao J, Castaño P (2017) SAPO-18 and SAPO-34 catalysts for propylene production from the oligomerization-cracking of ethylene or 1-butene. Appl Catal A Gen 547:176–182

    CAS  Google Scholar 

  8. Wang X, Ali S, Yuan F, Li Z, Zhu Y (2018) CTAB-assisted size controlled synthesis of SAPO-34 and its contribution toward MTO performance. Dalton Trans 47(29):9861–9870

    Google Scholar 

  9. Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2014) Aluminium chloride: A new aluminium source to prepare SAPO-34 catalysts with enhanced stability in the MTO process. Appl Catal A Gen 472:72–79

    Google Scholar 

  10. Nishiyama N, Kawaguchi M, Hirota Y, Van Vu D, Egashira Y, Ueyama K (2009) Size control of SAPO-34 crystals and their catalyst lifetime in the methanol-to-olefin reaction. Appl Catal A Gen 362(1-2):193–199

    CAS  Google Scholar 

  11. Lee KY, Chae H-J, Jeong S-Y, Seo G (2009) Effect of crystallite size of SAPO-34 catalysts on their induction period and deactivation in methanol-to-olefin reactions. Appl Catal A Gen 369(1-2):60–66

    CAS  Google Scholar 

  12. Li H, Wang Y, Fan C, Sun C, Wang X, Wang C, Zhang X, Wang S (2018) Facile synthesis of a superior MTP catalyst: Hierarchical micro-meso-macroporous ZSM-5 zeolites. Appl Catal A Gen 551:34–48

    CAS  Google Scholar 

  13. Li Y, Huang Y, Guo J, Zhang M, Wang D, Wei F, Wang Y (2014) Hierarchical SAPO-34/18 zeolite with low acid site density for converting methanol to olefins. Catal Today 233:2–7

    CAS  Google Scholar 

  14. Zhong J, Han J, Wei Y, Tian P, Guo X, Song C, Liu Z (2017) Recent advances of the nano-hierarchical SAPO-34 in the methanol-to-olefin (MTO) reaction and other applications. Catal Sci Technol 7(21):4905–4923

    CAS  Google Scholar 

  15. Sun Q, Xie Z, Yu J (2018) The state-of-the-art synthetic strategies for SAPO-34 zeolite catalysts in methanol-to-olefin conversion. Nat Sci Rev 5(4):542–558

    CAS  Google Scholar 

  16. Chen X, Vicente A, Qin Z, Ruaux V, Gilson J-P, Valtchev V (2016) The preparation of hierarchical SAPO-34 crystals via post-synthesis fluoride etching. Chem Commun 52(17):3512–3515

    CAS  Google Scholar 

  17. Qiao Y, Yang M, Gao B, Wang L, Tian P, Xu S, Liu Z (2016) Creation of hollow SAPO-34 single crystals via alkaline or acid etching. Chem Commun 52(33):5718–5721

    CAS  Google Scholar 

  18. Liu X, Ren S, Zeng G, Liu G, Wu P, Wang G, Chen X, Liu Z, Sun Y (2016) Coke suppression in MTO over hierarchical SAPO-34 zeolites. RSC Adv 6(34):28787–28791

    CAS  Google Scholar 

  19. Ren S, Liu G, Wu X, Chen X, Wu M, Zeng G, Liu Z, Sun Y (2017) Enhanced MTO performance over acid treated hierarchical SAPO-34. Chin J Catal 38(1):123–130

    CAS  Google Scholar 

  20. Rostamizadeh M, Yaripour F, Hazrati H (2018) Selective production of light olefins from methanol over desilicated highly siliceous ZSM-5 nanocatalysts. Polyolefins J 5(1):59–70

    CAS  Google Scholar 

  21. Kianfar E (2019) Nanozeolites: synthesized, properties, applications. J Sol-Gel Sci Technol 91(2):415–429

    CAS  Google Scholar 

  22. Varzaneh AZ, Towfighi J, Sahebdelfar S, Bahrami H (2016) Carbon nanotube templated synthesis of hierarchical SAPO-34 catalysts with different structure directing agents for catalytic conversion of methanol to light olefins. J Anal Appl Pyrolysis 121:11–23

    CAS  Google Scholar 

  23. Schmidt F, Paasch S, Brunner E, Kaskel S (2012) Carbon templated SAPO-34 with improved adsorption kinetics and catalytic performance in the MTO-reaction. Microporous Mesoporous Mater 164:214–221

    CAS  Google Scholar 

  24. Rimaz S, Halladj R, Askari S (2016) Synthesis of hierarchal SAPO-34 nano catalyst with dry gel conversion method in the presence of carbon nanotubes as a hard template. J Colloid Interf Sci 464:137–146

    CAS  Google Scholar 

  25. Mousavi SH, Fatemi S, Razavian M (2018) Synthesis and stability evaluation of hierarchical silicoaluminophosphates with different structural frameworks in the methanol to olefins process. Particuology 37:43–53

    CAS  Google Scholar 

  26. Mousavia SH, Fatemi S, Razavian M (2017) Synthesis and in situ modification of hierarchical SAPO-34 by PEG with different molecular weights; application in MTO process. arXiv preprint arXiv:170109159

    Google Scholar 

  27. Sun Q, Wang N, Guo G, Chen X, Yu J (2015) Synthesis of tri-level hierarchical SAPO-34 zeolite with intracrystalline micro–meso–macroporosity showing superior MTO performance. J. Mater. Chem. A 3(39):19783–19789

    CAS  Google Scholar 

  28. Cui Y, Zhang Q, He J, Wang Y, Wei F (2013) Pore-structure-mediated hierarchical SAPO-34: Facile synthesis, tunable nanostructure, and catalysis applications for the conversion of dimethyl ether into olefins. Particuology 11(4):468–474

    CAS  Google Scholar 

  29. Yang B, Zhao P, Ma J, Li R (2016) Synthesis of hierarchical SAPO-34 nanocrystals with improved catalytic performance for methanol to olefins. Chem Phys Lett 665:59–63

    CAS  Google Scholar 

  30. Yang S-T, Kim J-Y, Chae H-J, Kim M, Jeong S-Y, Ahn W-S (2012) Microwave synthesis of mesoporous SAPO-34 with a hierarchical pore structure. Mater Res Bull 47(11):3888–3892

    CAS  Google Scholar 

  31. Chaida-Chenni FZ, Belhadj F, Casas MSG, Márquez-Álvarez C, Hamacha R, Bengueddach A, Pérez-Pariente J (2018) Synthesis of mesoporous-zeolite materials using Beta zeolite nanoparticles as precursors and their catalytic performance in m-xylene isomerization and disproportionation. Appl Catal A Gen 568:148–156

    CAS  Google Scholar 

  32. Rana BS, Singh B, Kumar R, Verma D, Bhunia MK, Bhaumik A, Sinha AK (2010) Hierarchical mesoporous Fe/ZSM-5 with tunable porosity for selective hydroxylation of benzene to phenol. J Mater Chem 20(39):8575–8581

    CAS  Google Scholar 

  33. Huang H, Wang L, Cai Y, Zhou C, Yuan Y, Zhang X, Wan H, Guan G (2015) Facile fabrication of urchin-like hollow boehmite and alumina microspheres with a hierarchical structure via Triton X-100 assisted hydrothermal synthesis. CrystEngComm 17(6):1318–1325

    CAS  Google Scholar 

  34. DU S, Li F, Sun Q, Wang N, Jia M, Yu J (2016) A green surfactant-assisted synthesis of hierarchical TS-1 zeolites with excellent catalytic properties for oxidative desulfurization. Chem Commun 52(16):3368–3371

    CAS  Google Scholar 

  35. Narayanan S, Vijaya JJ, Sivasanker S, Kennedy LJ, Jesudoss S (2015) Structural, morphological and catalytic investigations on hierarchical ZSM-5 zeolite hexagonal cubes by surfactant assisted hydrothermal method. Powder Technol 274:338–348

    CAS  Google Scholar 

  36. Rami MD, Taghizadeh M, Akhoundzadeh H (2019) Synthesis and characterization of nano-sized hierarchical porous AuSAPO-34 catalyst for MTO reaction: Special insight on the influence of TX-100 as a cheap and green surfactant. Microporous Mesoporous Mater 285:259–270

    CAS  Google Scholar 

  37. Schmitt V, Arditty S, Leal-Calderon F (2004) Chapter 15 - Stability of concentrated emulsions. In: Petsev DN (ed) Interface Science and Technology, vol 4. Elsevier, pp 607-639. https://doi.org/10.1016/S1573-4285(04)80017-6

  38. Ojha S, Singh D, Sett A, Chetia H, Kabiraj D, Bora U (2018) Nanotechnology in crop protection. In: Nanomaterials in Plants, Algae, and Microorganisms. Elsevier, pp 345-391

  39. Álvaro-Muñoz T, Márquez-Álvarez C, Sastre E (2013) Enhanced stability in the methanol-to-olefins process shown by SAPO-34 catalysts synthesized in biphasic medium. Catal Today 215:208–215

    Google Scholar 

  40. Aghaei E, Haghighi M (2015) Effect of crystallization time on properties and catalytic performance of nanostructured SAPO-34 molecular sieve synthesized at high temperatures for conversion of methanol to light olefins. Powder Technol 269:358–370

    CAS  Google Scholar 

  41. Bueno-Ferrer C, Parres-Esclapez S, Lozano-Castelló D, Bueno-López A (2010) Relationship between surface area and crystal size of pure and doped cerium oxides. J Rare Earths 28(5):647–653

    CAS  Google Scholar 

  42. Sun Q, Wang N, Bai R, Chen X, Yu J (2016) Seeding induced nano-sized hierarchical SAPO-34 zeolites: cost-effective synthesis and superior MTO performance. J Mater Chem A 4(39):14978–14982

    CAS  Google Scholar 

  43. Thommes M, Kaneko K, Neimark AV, Olivier JP, Rodriguez-Reinoso F, Rouquerol J, Sing KS (2015) Physisorption of gases, with special reference to the evaluation of surface area and pore size distribution (IUPAC Technical Report). Pure Appl Chem 87(9-10):1051–1069

    CAS  Google Scholar 

  44. Razavian M, Fatemi S (2014) Fabrication of SAPO‐34 with Tuned Mesopore Structure. Zeitschrift für anorganische und allgemeine Chemie 640(10):1855–1859

    CAS  Google Scholar 

  45. Benghalem MA, Pinard L, Comparot J-D, Astafan A, Daou TJ, Belin T (2017) Impact of Crystal Size on the Acidity and the Involved Interactions Studied by Conventional and Innovative Techniques. The. J Phys Chem C 121(34):18725–18737

    CAS  Google Scholar 

  46. Jang H-G, Min H-K, Lee JK, Hong SB, Seo G (2012) SAPO-34 and ZSM-5 nanocrystals’ size effects on their catalysis of methanol-to-olefin reactions. Appl Catal A Gen 437:120–130

    Google Scholar 

  47. Chen H, Wang M, Yang M, Shang W, Yang C, Liu B, Hao Q, Zhang J, Ma X (2019) Organosilane surfactant-directed synthesis of nanosheet-assembled SAPO-34 zeolites with improved MTO catalytic performance. J Mater Sci 54(11):8202–8215

    CAS  Google Scholar 

  48. Yu Y, Qin J, Xiao M, Wang S, Han D, Meng Y (2019) Performance enhanced SAPO-34 catalyst for methanol to olefins: template synthesis using a CO2-based polyurea. Catalysts 9(1):16

    Google Scholar 

  49. Guo G, Sun Q, Wang N, Bai R, Yu J (2018) Cost-effective synthesis of hierarchical SAPO-34 zeolites with abundant intracrystalline mesopores and excellent MTO performance. Chem Commun 54(30):3697–3700

    CAS  Google Scholar 

  50. Wu P, Yang M, Zhang W, Xu S, Guo P, Tian P, Liu Z (2017) Synthesis of SAPO-34 nanoaggregates with the assistance of an inexpensive three-in-one non-surfactant organosilane. Chem Commun 53(36):4985–4988

    CAS  Google Scholar 

  51. Wang C, Yang M, Zhang W, Su X, Xu S, Tian P, Liu Z (2016) Organophosphorous surfactant-assistant synthesis of SAPO-34 molecular sieve with special morphology and improved MTO performance. RSC Adv 6(53):47864–47872

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jafar Towfighi.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Akhgar, S., Towfighi, J. & Hamidzadeh, M. A green and cost-effective surfactant-assisted synthesis of SAPO-34 using dual microporous templates with improved performance in MTO reaction. J Sol-Gel Sci Technol 95, 253–264 (2020). https://doi.org/10.1007/s10971-020-05308-w

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05308-w

Keywords

Navigation