Skip to main content
Log in

Investigation of the photoanode based on graphene/zinc aluminum mixed metal oxide for dye-sensitized solar cell

  • Original Paper: Sol–gel and hybrid materials for optical, photonic and optoelectronic applications
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

In this study, zinc aluminum layered double hydroxide (ZnAl-LDH) with a Zn/Al molar ratio 8/1 was synthesized via a facile urea method, and the mixed metal oxide (MMO) was prepared using the corresponding LDH as a precursor. In order to improve the performance of electron transport layer, we introduced graphene into ZnAl-MMO to prepare new nanocomposites, ZnAl-MMO/graphene, as promising photoanodes for dye-sensitized solar cell (DSSC). The bare ZnAl-MMO and formed ZnAl-MMO/graphene nanocomposites were characterized by X-ray diffraction (XRD), Raman spectra, scanning electron microscope (SEM) and UV–vis absorption spectrum, confirming the presence of graphene and the wurtzite type phase of ZnO. A series of DSSC were fabricated by the corresponding nanocomposites and a D205 as dye. The photovoltaic behavior of these cells based on different graphene concentration was further investigated by electrochemical method. It turned out that the introduced graphene facilitated the dye adsorption and light-scattering, which heightened the performance of DSSC. The DSSC based on ZnAl-MMO/0.2 wt.% graphene reached the best power conversion efficiency (PCE) of 0.51%, showing a rise of 25% approximately when compared with plain ZnAl-MMO.

Highlights

  • The ZnAl-LDH worked as the precursor of the MMO.

  • Graphene/ZnAl-MMO were used as photoanode for DSSC.

  • The incorporation of graphene enhanced the PCE of DSSC.

  • The cell of ZnAl-MMO/0.2wt.% graphene reached the best PCE.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  1. O’Regan B, Grätzel M (1991) Nature 353:737–739

    Google Scholar 

  2. Hagfeldt A, Boschloo G, Sun LC, Kloo L, Pettersson H (2010) Chem Rev 110:6595–6663

    CAS  Google Scholar 

  3. Grätzel M (2003) J Photochem Photobiol C-Photochem Rev 4:145–153

    Google Scholar 

  4. Mishra A, Fischer MKR, Baeuerle P (2009) Angew Chem-Int Ed 48:2474–2499

    CAS  Google Scholar 

  5. Ho H-W, Cheng W-Y, Lo Y-C, Wei T-C, Lu S-Y (2014) Acs Appl Mater Interfaces 6:17518–17525

    CAS  Google Scholar 

  6. Lee JH, Chang J, Cha J-H, Jung D-Y, Kim SS, Kim JM (2010) Chem-a Eur J 16:8296–8299

    CAS  Google Scholar 

  7. Wang Q, O’Hare D (2012) Chem Rev 112:4124–4155

    CAS  Google Scholar 

  8. Fahami A, Al-Hazmi FS, Al-Ghamdi AA, Mahmoud WE, Beall GW (2016) J Alloy Compd 683:100–107

    CAS  Google Scholar 

  9. Rives V, Ulibarri MA (1999) Coord Chem Rev 181:61–120

    CAS  Google Scholar 

  10. Liu J, Song J, Xiao H, Zhang L, Qin Y, Liu D, Hou W, Du N (2014) Powder Technol 253:41–45

    CAS  Google Scholar 

  11. Song J, Leng M, Xiao H, Zhang L, Qin Y, Hou W, Du N, Liu J (2014) J Nanosci Nanotechnol 14:4649–4654

    CAS  Google Scholar 

  12. Song J, Leng M, Fu X, Liu J (2012) J Alloy Compd 543:142–146

    CAS  Google Scholar 

  13. Cao J, Zhao Y, Zhu Y, Yang X, Shi P, Xiao H, Du N, Hou W, Qi G, Liu J (2017) J Colloid Interface Sci 498:223–228

    CAS  Google Scholar 

  14. Zhang L, Liu J, Xiao H, Liu D, Qin Y, Wu H, Li H, Du N, Hou W (2014) Chem Eng J 250:1–5

    CAS  Google Scholar 

  15. Zhu YT, Wang DL, Yang XY, Liu S, Liu D, Liu J, Xiao HD, Hao XT, Liu JQ (2017) Appl Phys A-Mater Sci Process 123:641

    Google Scholar 

  16. Geim AK, Novoselov KS (2007) Nat Mater 6:183–191

    CAS  Google Scholar 

  17. Bonaccorso F, Colombo L, Yu G, Stoller M, Tozzini V, Ferrari AC, Ruoff RS, Pellegrini V (2015) Science 347:1246501

    Google Scholar 

  18. Seresht RJ, Jahanshahi M, Rashidi A, Ghoreyshi AA (2013) Appl Surf Sci 276:672–681

    Google Scholar 

  19. Balandin AA, Ghosh S, Bao W, Calizo I, Teweldebrhan D, Miao F, Lau CN (2008) Nano Lett 8:902–907

    CAS  Google Scholar 

  20. Castro Neto AH, Guinea F, Peres NMR, Novoselov KS, Geim AK (2009) Rev Mod Phys 81:109–162

    CAS  Google Scholar 

  21. Liu L, Zeng B, Meng Q, Zhang Z, Li J, Zhang X, Yang P, Wang H (2016) Synth Met 222:219–223

    CAS  Google Scholar 

  22. Robinson K, Kumara GRA, Kumara RJGLR, Jayaweera EN, Rajapakse RMG(2018) Org Electron 56:159–162

    CAS  Google Scholar 

  23. Daud M, Kamal MS, Shehzad F, Al-Harthi MA (2016) Carbon 104:241–252

    CAS  Google Scholar 

  24. Cao Y, Li G, Li X (2016) Chem Eng J 292:207–223

    CAS  Google Scholar 

  25. Badawi A, Al-Hosiny N, Abdallah S (2015) Superlattices Microstruct 81:88–96

    CAS  Google Scholar 

  26. Zhang L, Hui KN, Hui KS, Lee H (2015) Electrochim Acta 186:522–529

    CAS  Google Scholar 

  27. Li H, Wen J, Yu R, Meng J, Wang C, Wang C, Sun S (2015) Rsc Adv 5:9341–9347

    CAS  Google Scholar 

  28. Cao J, Zhu Y, Yang X, Chen Y, Li Y, Xiao H, Hou W, Liu J (2016) Sol Energy Mater Sol Cells 157:814–819

    CAS  Google Scholar 

  29. Cao J, Zhu Y, Yang X, Liu S, Liu D, Tang X, Xiao H, Hou W, Qi G, Liu J (2017) Mater Res Express 4:045501

    Google Scholar 

  30. Timoumi Abdelmajid, Alamric SalehNoaiman, Alamria Hatem (2018) Results Phys 11:46–51

    Google Scholar 

  31. Yusuf Mohammed, Kumar Mahendra, Khan MoonisAli, Sillanpää Mika, Arafat Hassan (2019) Adv Colloid Interface Sci 273:102036

    CAS  Google Scholar 

  32. Tang B, Hu G, Gao H (2010) Appl Spectrosc Rev 45:369–407

    CAS  Google Scholar 

  33. Chen L, Zhou Y, Tu W, Li Z, Bao C, Dai H, Yu T, Liu J, Zou Z (2013) Nanoscale 5:3481–3485

    CAS  Google Scholar 

  34. Ito S, Makari Y, Kitamura T, Wada Y, Yanagida S (2005) J Mater Chem 15:1106–1106

    CAS  Google Scholar 

  35. Yang N, Zhai J, Wang D, Chen Y, Jiang L (2010) Acs Nano 4:887–894

    CAS  Google Scholar 

  36. Tang Y-B, Lee C-S, Xu J, Liu Z-T, Chen Z-H, He Z, Cao Y-L, Yuan G, Song H, Chen L, Luo L, Cheng H-M, Zhang W-J, Bello I, Lee S-T (2010) Acs Nano 4:3482–3488

    CAS  Google Scholar 

  37. Wang Q, Moser JE, Gratzel M (2005) J Phys Chem B 109:14945–14953

    CAS  Google Scholar 

  38. Han LY, Koide N, Chiba Y, Mitate T (2004) Appl Phys Lett 84:2433–2435

    CAS  Google Scholar 

  39. Tsai C-H, Fei P-H, Wu W-C (2015) Electrochim Acta 165:356–364

    CAS  Google Scholar 

  40. Kern R, Sastrawan R, Ferber J, Stangl R, Luther J (2002) Electrochim Acta 47:4213–4225

    CAS  Google Scholar 

  41. Mozaffari SA, Saeidi M, Rahmanian R (2015) Spectrochim Acta A 142:226–231

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Key Research and Development Plan of Shandong Province, China (2018GGX102014), the Major Program of Shandong Province Natural Science Foundation, China (ZR2019ZD43), and the National Natural Science Foundation of China (51372141 and 11564020).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jianqiang Liu.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ge, Z., Zhu, Y., Wang, C. et al. Investigation of the photoanode based on graphene/zinc aluminum mixed metal oxide for dye-sensitized solar cell. J Sol-Gel Sci Technol 95, 432–438 (2020). https://doi.org/10.1007/s10971-020-05310-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-020-05310-2

Keywords

Navigation