Skip to main content
Log in

Experimental Investigation of Phase Equilibria in the Fe-Cr-Si Ternary System

  • Published:
Journal of Phase Equilibria and Diffusion Aims and scope Submit manuscript

Abstract

Isothermal sections of the Fe-Cr-Si ternary system at 1000 and 1100 °C were studied using x-ray diffraction, scanning electron microscopy and electron probe micro-analysis. Isothermal sections were identified with seven and six three-phase regions at 1000 and 1100 °C, respectively. The σ phase contains 6.2-20.2 at.% Si at 1000 °C and 8.3-21.2 at.% Si at 1100 °C. Fe and Cr can be entirely substituted by each other to form the continuous solid-solution ε or CrSi phases. The η phase is stable at 1100 °C because of the dissolution of Cr. Additionally, large solubility was detected in some binary compounds, e.g., up to 26.6 and 19.6 at.% Fe in αCr5Si3 and Cr3Si at 1000 °C, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. X. Zhang, D. Liang, X. Wang, and P. Zhou, The Evolution of Microstructure and Magnetic Properties of Fe-Si-Cr Powders on Ball-Milling Process, J. Alloys Compd., 2014, 582, p 558-562

    Article  Google Scholar 

  2. S.F. Chen, C.Y. Hung, S.J. Wang, S.H. Chen, and C.C. Chen, Influence of Annealing Treatment on Soft Magnetic Properties of Fe76Si10B10Cr2Y2 Amorphous Ribbon, J. Alloys Compd., 2015, 627, p 333-336

    Article  Google Scholar 

  3. R.B. Yang, W.F. Liang, C.C. Chen, and S.T. Choi, Electromagnetic and Microwave Absorbing Properties of Raw and Milled FeSiCr Particles, J. Appl. Phys., 2014, 115(17), p 17B536

    Article  Google Scholar 

  4. Y. Yoshizawa, S. Oguma, and K. Yamauchi, New Fe-Based Soft Magnetic Alloys Composed of Ultrafine grain structure, J. Appl. Phys., 1988, 64(10), p 6044-6046

    Article  ADS  Google Scholar 

  5. K. Inomata, M. Hasegawa, and S. Shimanuki, Magnetic Properties of Amorphous Fe-Cr-Si-B Alloys, IEEE Trans. Magn., 1981, 17(6), p 3076-3078

    Article  ADS  Google Scholar 

  6. T. Ros-Yañez, Y. Houbaert, and V. Gómez Rodríguez, High-Silicon Steel Produced by Hot Dipping and Diffusion Annealing, J. Appl. Phys., 2002, 91(10), p 7857-7859

    Article  ADS  Google Scholar 

  7. T. Ros-Yañez, Y. Houbaert, O. Fischer, and J. Schneider, Production of High Silicon Steel for Electrical Applications by Thermomechanical Processing, J. Mater. Process. Technol., 2003, 143-144, p 916-921

    Article  Google Scholar 

  8. H. Haiji, K. Okada, T. Hiratani, M. Abe, and M. Ninomiya, Magnetic Properties and Workability of 6.5% Si Steel Sheet, J. Magn. Magn. Mater., 1996, 160, p 109-114

    Article  ADS  Google Scholar 

  9. Z. Wang and J. Zhu, Cavitation Erosion of Fe-Mn-Si-Cr Shape Memory Alloys, Wear, 2004, 256(1-2), p 66-72

    Article  Google Scholar 

  10. R. Idczak, R. Konieczny, T. Pikula, and Z. Surowiec, Microstructure and Corrosion Properties of Fe-Cr-Si Alloys Prepared by Mechanical Alloying Method, Corrosion, 2019, 75(6), p 680-686

    Article  Google Scholar 

  11. J. Moon, S. Kim, W.D. Park, T.Y. Kim, S.W. McAlpine, M.P. Short, J.H. Kim, and C.B. Bahn, Initial Oxidation Behavior of Fe-Cr-Si Alloys in 1200 °C Steam, J. Nucl. Mater., 2019, 513, p 297-308

    Article  ADS  Google Scholar 

  12. J. Robertson and M.I. Manning, Healing Layer Formation in Fe-Cr-Si Ferritic Steels, Mater. Sci. Technol., 2013, 5(8), p 741-753

    Article  Google Scholar 

  13. C. Yu, J. Zhang, and D.J. Young, High Temperature Corrosion of Fe-Cr-(Mn/Si) Alloys in CO2-H2O-SO2 Gases, Corros. Sci., 2016, 112, p 214-225

    Article  ADS  Google Scholar 

  14. A.M. Huntz, V. Bague, G. Beauplé, C. Haut, C. Sévérac, P. Lecour, X. Longaygue, and F. Ropital, Effect of Silicon on the Oxidation Resistance of 9% Cr Steels, Appl. Surf. Sci., 2003, 207(1-4), p 255-275

    Article  ADS  Google Scholar 

  15. O.K. von Goldbeck, Fe-Si Iron-Silicon, IRON-Binary Phase Diagramsed, Springer, Berlin, 1982, p 136-139

    Book  Google Scholar 

  16. S. Cui and I.-H. Jung, Critical Reassessment of the Fe-Si System, Calphad, 2017, 56, p 108-125

    Article  Google Scholar 

  17. R. Schmid, Thermodynamic Analysis of the Melting Equilibria in the Iron-Silicon System, Calphad, 1980, 4(2), p 101-108

    Article  Google Scholar 

  18. G.V. Raynor and V.G. Rivlin, The Cr-Fe (Chromium-Iron) System, Bull. Alloys Phase Diag., 1981, 2(1), p 99-100

    Article  Google Scholar 

  19. W. Xiong, M. Selleby, Q. Chen, J. Odqvist, and Y. Du, Phase Equilibria and Thermodynamic Properties in the Fe-Cr System, Crit. Rev. Solid State Mater. Sci., 2010, 35(2), p 125-152

    Article  ADS  Google Scholar 

  20. A. Jacob, E. Povoden-Karadeniz, and E. Kozeschnik, Revised Thermodynamic Description of the Fe-Cr System Based on an Improved Sublattice Model of the σ Phase, Calphad, 2018, 60, p 16-28

    Article  Google Scholar 

  21. A.B. Gokhale and G.J. Abbaschian, The Cr-Si (Chromium-Silicon) System, J. Phase Equilib., 1987, 8(5), p 474-484

    Article  Google Scholar 

  22. C.A. Coughanowr, I. Ansara, and H.L. Lukas, Assessment of the Cr-Si System, Calphad, 1994, 18(2), p 125-140

    Article  Google Scholar 

  23. Y. Du and J.C. Schuster, Experimental Reinvestigation of the CrSi-Si Partial System and Update of the Thermodynamic Description of the Entire Cr-Si System, J. Phase Equilib., 2000, 21(3), p 281-286

    Article  Google Scholar 

  24. S. Cui and I.-H. Jung, Thermodynamic Assessments of the Cr-Si and Al-Cr-Si Systems, J. Alloys Compd., 2017, 708, p 887-902

    Article  Google Scholar 

  25. A.G.H. Anderson and E.R. Jette, X-ray Investigation of the Iron-Chromium-Silicon Phase Diagram, Trans. Am. Soc. Met., 1936, 24, p 375-418

    Google Scholar 

  26. E. Gladyshevskii and L. Borusevich, The Ternary System Cr-Fe-Si, Izv. Akad. Nauk SSSR Met., 1966, 1, p 159-164

    Google Scholar 

  27. H.B. Awais, Phase Relations in the Fe-Fe5Si3-Cr3Si-Cr Region of the Fe-Cr-Si System, Ph.D. Thesis, University of Manchester, 1995

  28. H.B. Awais and F. Hayes, Phase Relations in Fe-Cr-Si System, Phase Transform., 1996, 96, p 62-66

    Google Scholar 

  29. M. Lindholm, A Thermodynamic Description of the Fe-Cr-Si System with Emphasis on the Equilibria of the Sigma (Σ) Phase, J. Phase Equilib., 1997, 18(5), p 432-440

    Article  Google Scholar 

  30. V. Raghavan, Phase Diagrams of Ternary Iron Alloys I, Cleveland, ASM International, 1987, p 226

    Google Scholar 

  31. V. Raghavan, Cr-Fe-Si (Chromium-Iron-Silicon), J. Phase Equilib., 1993, 14(5), p 626-628

    Article  Google Scholar 

  32. V. Raghavan, Cr-Fe-Si (Chromium-Iron-Silicon), J. Phase Equilib., 2003, 24(3), p 265-266

    Article  Google Scholar 

  33. V. Raghavan, Cr-Fe-Si (Chromium-Iron-Silicon), J Phase Equilib Differ., 2004, 25(6), p 545-546

    Article  Google Scholar 

  34. K. Yamamoto, Y. Kimura, and Y. Mishima, Phase Constitution and Microstructure of the Fe-Si-Cr Ternary Ferritic Alloys, Scr. Mater., 2004, 50(7), p 977-981

    Article  Google Scholar 

  35. A. Watson, M. Bulanova, and J.C. Tedenac, Chromium-Iron-Silicon, Iron Systems, Part 3, Springer, Berlin, 2008, p 327-364

    Google Scholar 

  36. Z. Li, Z. Zhou, X. Wang, Y. Liu, Y. Wu, M. Zhao, and F. Yin, Experimental Study of the Phase Relations in the Fe-Cr-Si Ternary System at 700 °C, Int. J. Mater. Res., 2014, 105(9), p 840-846

    Article  Google Scholar 

  37. S. Cui and I.H. Jung, Thermodynamic Assessments of the Fe-Si-Cr and Fe-Si-Mg Systems, Metall. Mater. Trans. A, 2017, 48(9), p 4342-4355

    Article  Google Scholar 

  38. F. Weitzer, J.C. Schuster, M. Naka, F. Stein, and M. Palm, On the Reaction Scheme and Liquidus Surface in the Ternary System Fe-Si-Ti, Intermetallics, 2008, 16(2), p 273-282

    Article  Google Scholar 

  39. D. Wang, S. Yang, J. Zheng, H. Hu, X. Liu, and C. Wang, Experimental Investigation of Phase Equilibria in the Fe-Si-Ti Ternary System, J Phase Equilib. Differ., 2017, 38(6), p 865-873

    Article  Google Scholar 

Download references

Acknowledgments

The authors acknowledge the financial support from the National Key Technologies R&D Program of China (Grant No. 2016YFB0700501), the National MCF Energy R&D Program of China (No. 2018YFE0306100), National Natural Science Foundation of China (Grant Nos. 51871248 and 51671218), State Key Laboratory of Powder Metallurgy Independent Project of China. The authors would like to thank Benjamin Porter, DPhil, from Liwen Bianji, Edanz Editing China for editing the English text of a draft of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Li-gang Zhang or Li-bin Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wen, Ad., Zhang, Lg., Liu, Lb. et al. Experimental Investigation of Phase Equilibria in the Fe-Cr-Si Ternary System. J. Phase Equilib. Diffus. 41, 587–597 (2020). https://doi.org/10.1007/s11669-020-00821-5

Download citation

  • Received:

  • Revised:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11669-020-00821-5

Keywords

Navigation