Skip to main content
Log in

Flotation Activity of Xanthogenates

  • Mineral Dressing
  • Published:
Journal of Mining Science Aims and scope

Abstract

The authors prove connection between the surface activity relative to gas-liquid interface and collecting ability in flotation for derivatives of xanthogenates (xanthogenates of heavy metals). It is shown that at nonstoichiometric ratio of xanthogenate and metallic salt concentrations, colloid particles are formed in solution. The influence of deviation from the nonstoichiometric ratio of xanthogenate and metallic salt concentration on the spreading velocity of the colloid system over water surface and on the collecting activity of the system is studied. It is found that the spreading velocity of derivatives of xanthogenates over water surface and their collecting activity depends on the duration of aging of the colloid system.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Leja, J., Surface Chemistry of Froth Flotation, Plenum press, 1st edition, New York and London, 1982.

  2. Kondrat’ev, S.A. and Gavrilova, T.G., Physical Adsorption Mechanism in Terms of Sulphide Mineral Activation by Heavy Metal Ions, J. Min. Sci., 2018, vol. 54, no. 3, pp. 466–478.

    Article  Google Scholar 

  3. Gardner, J.R. and Woods, R., The Use of a Particulate Bed Electrode for the Electrochemical Investigation of Metal and Sulphide Flotation, Aust. J. Chem., 1973, vol. 2, pp. 1635–1644.

    Article  Google Scholar 

  4. Nowak, P., Xanthate Adsorption at PbS Surfaces: Molecular Model and Thermodynamic Description, Colloids and Surfaces, Physicochem. Eng. Aspects, 1993, vol. 76, pp. 65–72.

    Article  Google Scholar 

  5. Hassialis, M.D. and Myers, C.G., Collecting agent Mobility and Bubble Contact, J. Min. Eng., 1951, vol. 3, pp. 961–968.

    Google Scholar 

  6. Laskowski, J.S., Thermodynamic and Kinetic Flotation Criteria, Miner. Proc. and Extractive Metallurgy Rev. DOI: https://doi.org/10.1080/08827508908952643.

  7. Quast, K., Flotation of Hematite Using C6–C18 Saturated Fatty Acids, J. Min. Eng., 2006, no. 19, pp. 582–597.

  8. Bleier, A., Goddard, E.D., and Kulkarni, R.D. Adsorption and Critical Flotation Conditions, J. of Colloid and Interface Sci., 1977, vol. 59, pp. 490–504.

    Article  Google Scholar 

  9. Huang, Z., Zhong, H., Wang, S., Xia, L., Zou, W., and Liu, G., Investigations on Reverse Cationic Flotation of Iron Ore by Using a Gemini Surfactant: Ethane-1,2-bis (Dimethyl-Dodecyl-Ammonium Bromide), Chem. Eng. J., 2014, vol. 257, pp. 218–228.

    Article  Google Scholar 

  10. Zhivankov, G.V. and Ryaboi, V.I., Collecting Properties and Surface Activity of Higher Aerofloats, Obogashch. Rud, 1985, no. 3, pp. 13–16.

  11. Kondrat’ev, S.A., Moshkin, N.P., and Konovalov, I.A., Collecting Ability of Easily Desorbed Xanthates, J. Min. Sci., 2015, vol. 51, no. 4, pp. 165–173.

    Article  Google Scholar 

  12. Mikhlin, Yu.L., Vorob’ev, S.A., Romanchenko, A.S., Karacharov, A.A., Karasev, S.V., Kuz’min, V.I., Kuz’min, D.V., Gudkova, N.V., Zhizhaev, A.M., and Saikova, S.V., Ul’tradispersnye chastitsy v pererabotke rud tsvetnykh i redkikh metallov Krasnoyarskogo kraya (Ultrafine Particles in the Processing of Nonferrous and Rare Metal Ores of the Krasnoyarsk Territory), Krasnoyarsk: IKhKhT SO RAN, 2016.

    Google Scholar 

  13. Bogdanov, O.S., Podnek, A.K., Khainman, V.Ya., and Yanis, N.A., Problems of Theory and Technology of Flotation, Trudy Mekhanobr, 1959, iss. 124, p. 392.

  14. Kondrat’ev, S.A. and Burdakova, E.A., Physical Adsorption Validity in Flotation, J. Min. Sci., 2018, vol. 53, no. 4, pp. 734–742.

    Article  Google Scholar 

  15. Kurkov, A.V. and Pastukhova, I.V., Flotation as the Subject-Matter of Supramolecular Chemistry, J. Min. Sci., 2010, vol. 46, no. 4, pp. 438–445.

    Article  Google Scholar 

  16. Mikhlin, Yu.L. (Ed.), Ul’tradispersnye chastitsy v pererabotke rud tsvetnykh i redkikh metallov Krasnoyarskogo kraya: monografiya (Ultrafine Particles in the Processing of Nonferrous and Rare Metal Ores of the Krasnoyarsk Territory: Thesis by Publication), Krasnoyarsk: SFU, 2016.

    Google Scholar 

  17. Klassen, V.I. and Tikhonov, S.A., The Effect of Sodium Oleate on the Flotation Properties of the Surface of Air Bubbles, Tsvet. Metally, 1960, no. 10, pp. 4–8.

  18. Wark, E. and Wark, I., Influence of Micelle Formation on Flotation, Nature, 1939, vol. 143, p. 856.

    Article  Google Scholar 

  19. Kondrat’ev, S.A., Reagenty-sobirateli v elementarnom akte flotatsii (Collecting Agents in an Elementary Flotation Act), Novosibirsk: Nauka, 2012.

    Google Scholar 

Download references

Funding

The study was supported in the framework of the Fundamental Research Program, project no. AAAA-A17-117092750073-6.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. A. Kondrat’ev.

Additional information

Russian Text © The Author(s), 2020, published in Fiziko-Tekhnicheskie Problemy Razrabotki Poleznykh Iskopaemykh, 2020, No. 1, pp. 114–123.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Konovalov, I.A., Kondrat’ev, S.A. Flotation Activity of Xanthogenates. J Min Sci 56, 104–112 (2020). https://doi.org/10.1134/S1062739120016539

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1134/S1062739120016539

Keywords

Navigation