Skip to main content
Log in

Discretization, bifurcation analysis and chaos control for Schnakenberg model

  • Original Paper
  • Published:
Journal of Mathematical Chemistry Aims and scope Submit manuscript

Abstract

Schnakenberg model is a system showing sustained oscillations for a simple model of glycolysis in which a metabolic process that converts glucose to provide energy for metabolism. Euler approximation is implemented to obtain discrete version of Schnakenberg model. It is proved that discrete-time system via Euler approximation undergoes Neimark–Sacker bifurcation as well as period-doubling bifurcation is also examined at its unique positive steady-state. Keeping in view the dynamical consistency for continuous models, a nonstandard finite difference scheme is proposed for Schnakenberg model. It is proved that continuous system undergoes Hopf bifurcation at its interior equilibrium, whereas discrete-time system via nonstandard finite difference scheme undergoes Neimark–Sacker bifurcation at its interior fixed point. Some chaos and bifurcation control methods are implemented to both discrete-time models. Numerical simulation is provided to strengthen our theoretical discussion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. I.R. Epstein, K. Showalter, Nonlinear chemical dynamics: oscillations, patterns, and chaos. J. Phys. Chem. 100(31), 13132–13147 (1996)

    CAS  Google Scholar 

  2. A. d’Onofrio, Uniqueness and global attractivity of glycolytic oscillations suggested by Selkov’s model. J. Math. Chem. 48, 339–346 (2010)

    Google Scholar 

  3. J. Schnakenberg, Simple chemical reaction systems with limit cycle behavior. J. Theor. Biol. 81, 389–400 (1979)

    CAS  PubMed  Google Scholar 

  4. I. Prigogine, R. Lefever, Symmetry breaking instabilities in dissipative systems. II. J. Chem. Phys. 48, 1695–1700 (1968)

    Google Scholar 

  5. D.L. Benson, J.A. Sherratt, P.K. Maini, Diffusion driven instability in an inhomogeneous domain. Bull. Math. Biol. 55(2), 365–384 (1993)

    Google Scholar 

  6. L.J. Shaw, J.D. Murray, Analysis of a model for complex skin patterns. SIAM J. Appl. Math. 50, 628–648 (1990)

    Google Scholar 

  7. KS Al Noufaey, Semi-analytical solutions of the Schnakenberg model of a reaction-diffusion cell with feedback. Results Phys. 9, 609–614 (2018)

    Google Scholar 

  8. M. Sattari, J. Tuomela, On the numerical simulation of Schnakenberg model on evolving surface. Math. Sci. Lett. 4(3), 223–234 (2015)

    Google Scholar 

  9. A. Al-Zarka, A. Alagha, S. Timoshin, Transient behaviour in RDA systems of the Schnakenberg type. J. Math. Chem. 53, 111–127 (2015)

    CAS  Google Scholar 

  10. F. Yi, E.A. Gaffney, S. Seirin-Lee, The bifurcation analysis of turing pattern formation induced by delay and diffusion in the Schnakenberg system. Discrete Contin. Dyn. Syst. Ser. B 22(2), 647–668 (2017)

    Google Scholar 

  11. G. Liu, Y. Wang, Pattern formation of a coupled two-cell Schnakenberg model. Discrete Continuous Dyn. Syst. Ser. S 10(5), 1051–1062 (2017)

    Google Scholar 

  12. P. Liu, J. Shi, Y. Wang, X. Feng, Bifurcations analysis of reaction-diffusion Schnakenberg model. J. Math. Chem. 51, 2001–2019 (2013)

    CAS  Google Scholar 

  13. J. Zhu, Y.T. Zhang, S.A. Newman, M. Alber, Application of discontinuous Galerkin methods for reaction-diffusion systems in developmental biology. J. Sci. Comput. 40, 391–418 (2009)

    Google Scholar 

  14. Y. Ishii, K. Kurata, Existence and stability of one-peak symmetric stationary solutions for the Schnakenberg model with heterogeneity. Discrete Contin. Dyn. Syst. Ser. S 39(5), 2807–2875 (2019)

    Google Scholar 

  15. H. Qian, S. Saffarian, E.L. Elson, Concentration fluctuations in a mesoscopic oscillating chemical reaction system. Proc. Natl. Acad. Sci. 99(16), 10376–10381 (2002)

    CAS  PubMed  Google Scholar 

  16. M. VelleLa, H. Qian, On the Poincaré-Hill cycle map of rotational random walk: locating the stochastic limit cycle in a reversible Schnakenberg model. Proc. R. Soc. A 466, 771–788 (2010)

    Google Scholar 

  17. J.D. Murray, Mathematical biology, 2nd edn. (Springer, New York, 1991), pp. 140–166

    Google Scholar 

  18. A. Goldbeter, Biochemical oscillations and cellular rhythms: the molecular bases of periodic and chaotic behaviour (Cambridge University Press, London, 1997)

    Google Scholar 

  19. D. Iron, J. Wei, M. Winter, Stability analysis of Turing patterns generated by the Schnakenberg model. J. Math. Biol. 49, 358–390 (2004)

    PubMed  Google Scholar 

  20. Q. Din, A novel chaos control strategy for discrete-time Brusselator models. J. Math. Chem. 56(10), 3045–3075 (2018)

    CAS  Google Scholar 

  21. Q. Din, Bifurcation analysis and chaos control in discrete-time glycolysis models. J. Math. Chem. 56(3), 904–931 (2018)

    CAS  Google Scholar 

  22. Q. Din, T. Donchev, D. Kolev, Stability, bifurcation analysis and chaos control in chlorine dioxide-iodine-malonic acid reaction. MATCH Commun. Math. Comput. Chem. 79(3), 577–606 (2018)

    Google Scholar 

  23. Q. Din, M.A. Iqbal, Bifurcation analysis and chaos control for a discrete-time enzyme model. Z. Naturforschung A 74(1), 1–14 (2019)

    CAS  Google Scholar 

  24. P.C. Rech, Organization of the periodicity in the parameter-space of a glycolysis discrete–time mathematical model. J. Math. Chem. 57(2), 632–637 (2019)

    CAS  Google Scholar 

  25. P. Liu, S.N. Elaydi, Discrete competitive and cooperative models of Lotka–Volterra type. J. Comp. Anal. Appl. 3, 53–73 (2001)

    Google Scholar 

  26. R. Mickens, Nonstandard Finite Difference Methods of Differential Equations (World Scientific, Singapore, 1994)

    Google Scholar 

  27. J. Carr, Application of Center Manifold Theory (Springer, New York, 1981)

    Google Scholar 

  28. J. Guckenheimer, P. Holmes, Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields (Springer, New York, 1983)

    Google Scholar 

  29. C. Robinson, Dynamical Systems: Stability, Symbolic Dynamics and Chaos (Boca Raton, New York, 1999)

    Google Scholar 

  30. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos (Springer, New York, 2003)

    Google Scholar 

  31. Y.H. Wan, Computation of the stability condition for the Hopf bifurcation of diffeomorphism on R2. SIAM. J. Appl. Math. 34, 167–175 (1978)

    Google Scholar 

  32. Y.A. Kuznetsov, Elements of Applied Bifurcation Theory (Springer, New York, 1997)

    Google Scholar 

  33. E. Ott, C. Grebogi, J.A. Yorke, Controlling chaos. Phys. Rev. Lett. 64(11), 1196–1199 (1990)

    CAS  PubMed  Google Scholar 

  34. F.J. Romeiras, C. Grebogi, E. Ott, W.P. Dayawansa, Controlling chaotic dynamical systems. Phys. D 58, 165–192 (1992)

    Google Scholar 

  35. X.S. Luo, G.R. Chen, B.H. Wang, J.Q. Fang, Hybrid control of period-doubling bifurcation and chaos in discrete nonlinear dynamical systems. Chaos Soliton Fract. 18(4), 775–783 (2003)

    Google Scholar 

  36. E. Schöll, H.G. Schuster, Handbook of chaos control (Wiley, Weinheim, 2007)

    Google Scholar 

  37. S. Lynch, Dynamical Systems with Applications Using Mathematica (Birkhäuser, Boston, 2007)

    Google Scholar 

  38. K. Ogata, Modern Control Engineering, 2nd edn. (Prentice-Hall, Englewood, 1997)

    Google Scholar 

  39. Q. Din, Complexity and chaos control in a discrete-time prey-predator model. Commun. Nonlinear Sci. Numer. Simul. 49, 113–134 (2017)

    Google Scholar 

  40. Q. Din, Controlling chaos in a discrete-time prey-predator model with Allee effects. Int. J. Dyn. Control 6(2), 858–872 (2018)

    Google Scholar 

  41. Q. Din, Stability, bifurcation analysis and chaos control for a predator-prey system. J. Vib. Control 25(3), 612–626 (2019)

    Google Scholar 

  42. Q. Din, Neimark–Sacker bifurcation and chaos control in Hassell–Varley model. J. Differ. Equ. Appl. 23(4), 741–762 (2017)

    Google Scholar 

  43. Q. Din, Ö.A. Gümüş, H. Khalil, Neimark–Sacker bifurcation and chaotic behaviour of a modified Host–Parasitoid model. Z. Naturforschung A 72(1), 25–37 (2017)

    CAS  Google Scholar 

  44. Q. Din, Qualitative analysis and chaos control in a density-dependent host-parasitoid system. Int. J. Dyn. Control 6(2), 778–798 (2018)

    Google Scholar 

  45. L.-G. Yuan, Q.-G. Yang, Bifurcation, invariant curve and hybrid control in a discrete-time predator-prey system. Appl. Math. Model. 39(8), 2345–2362 (2015)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Qamar Din.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Din, Q., Haider, K. Discretization, bifurcation analysis and chaos control for Schnakenberg model. J Math Chem 58, 1615–1649 (2020). https://doi.org/10.1007/s10910-020-01154-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10910-020-01154-x

Keywords

Mathematics Subject Classification

Navigation