Skip to main content
Log in

Regio-specific biotransformation of alizarin to alizarin methoxide with enhanced cytotoxicity against proliferative cells

  • Natural Products - Short Communication
  • Published:
Journal of Industrial Microbiology & Biotechnology

Abstract

Alizarin has been reported to have an antigenotoxic activity along with an inhibitory effect on the tumor cell growth of human colon carcinoma cells. Alizarin was biotransformed into an O-methoxide derivative using O-methyltransferase from Streptomyces avermitilis MA4680 (SaOMT2) to enhance its bioefficacy. The biotransformed product was extracted, purified, and characterized using various chromatographic and spectroscopic analyses, and confirmed to be an alizarin 2-O-methoxide. The antiproliferative activity of the compound against gastric cancer cells (AGS), uterine cervical cancer (Hela), liver cancer (HepG2), and normal cell lines was investigated. Alizarin 2-O-methoxide showed an inhibitory effect on all three cancer-cell lines at very low concentrations, from 0.078 µM, with no cytotoxicity against 267B1 (human prostate epithelial) and MRC-5 (normal human fetal lung fibroblast).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

References

  1. Bajpai VK, Alam MB, Quan KT, Choi HJ, An H, Ju MK, Na M (2018) Cytotoxic properties of the anthraquinone derivatives isolated from the roots of Rubia philippinensis. BMC Complement Altern Med 18(1):200

    Article  Google Scholar 

  2. Bien HS, Stawitz J, Wunderlich K (2005) Anthraquinone dyes and intermediates. Wile, Weinheim, p 355

    Google Scholar 

  3. Blömeke B, Poginsky B, Schmutte C, Marquardt H, Westendorf J (1992) Formation of genotoxic metabolites from anthraquinone glycosides present in Rubia tinctorum L. Mutat Res 265:263–272

    Article  Google Scholar 

  4. Brown JP, Brown RJ (1976) Mutagenesis by 9, 10-anthraquinone derivatives and related compounds in Salmonella typhimurium. Mutat Res 40:203–224

    Article  CAS  Google Scholar 

  5. Chang P, Lee KH, Shingu T, Hirayama T, Hall IH (1982) Antitumor agents 50. Morindaparvin-A, a new antileukemic anthraquinone, and alizarin-1-methyl ether from Morinda parvifolia, and the antileukemic activity of the related derivatives. J Nat Prod 45(2):206–210

    Article  CAS  Google Scholar 

  6. Fotia C, Avnet S, Granchi D, Baldini N (2012) The natural compound alizarin as an osteotropic drug for the treatment of bone tumors. J Orthop Res 30(9):1486–1492

    Article  CAS  Google Scholar 

  7. Jäger I, Hafner C, Welsch C (2006) The mutagenic potential of madder root in dyeing processes in the textile industry. Mutat Res 605:22–29

    Article  Google Scholar 

  8. Kalidhar SB (1989) Structural elucidation in anthraquinones using 1H NMR glycosylation and alkylation shifts. Phytochemistry 28:3459–3463

    Article  CAS  Google Scholar 

  9. Kamei H, Tatsurou K, Takashi K (1998) Inhibition of cell growth in culture by quinines. Cancer Biother Radiopharm 13:185–188

    Article  CAS  Google Scholar 

  10. Kim BG, Jung BR, Lee YS, Hur HG, Lim YH, Ahn JH (2006) Regiospecific flavonoid 7 O-methylation with Streptomyces avermitilisO-methyltransferase expressed in Escherichia coli. J Agric Food Chem 54:823–828

    Article  CAS  Google Scholar 

  11. Liu Q, Kim SB, Ahn JH, Hwang BY, Kim SY, Lee MK (2012) Anthraquinones from Morinda officinalis roots enhance adipocyte differentiation in 3T3-L1 cells. Nat Prod Res Former Nat Prod Lett 26(18):1750–1754

    CAS  Google Scholar 

  12. Lofrumento C, Ricci M, Platania E, Becuccia M, Castellucci E (2013) SERS detection of red organic dyes in Ag-agar gel. J Raman Spectrosc 44:47–54

    Article  CAS  Google Scholar 

  13. Lowengard S (2006) Industry and ideas: Turkey red. The creation of color in 18th century Europe. Gutenberg-E, Mainz

    Google Scholar 

  14. Meloan SN, Puchtler H, Valentine LS (1972) Alkaline and acid alizarin red S stains for alkali-soluble and alkali-insoluble calcium deposits. Arch Pathol 93:190–197

    CAS  PubMed  Google Scholar 

  15. Mori H, Yoshimi N, Iwata H, Mori Y, Hara A, Tanaka T, Kawai K (1990) Carcinogenicity of naturally occurring 1-hydroxyanthraquinone in rats: induction of large bowel, liver and stomach neoplasms. Carcinogenesis 11:799–802

    Article  CAS  Google Scholar 

  16. Nam W, Kim S, Nam S, Friedman M (2017) Structure-antioxidative and anti-inflammatory activity relationships of purpurin and related anthraquinones in chemical and cell assays. Molecules 22:265

    Article  Google Scholar 

  17. Nguyen THT, Pandey RP, Parajuli P, Han JM, Jung HJ, Park YI, Sohng JK (2018) Microbial synthesis of non-natural anthraquinone glucoside displaying superior antiproliferative properties. Molecules 23:2171

    Article  Google Scholar 

  18. Santis DD, Moresi M (2007) Production of alizarin extracts from Rubia tinctorum and assessment of their dyeing properties. Ind Crops Prod 26:151–162

    Article  Google Scholar 

  19. Simpson MG (2006) Plant systematics, 1st edn. Elsevier, Amsterdam (ISBN 978-0-12-644460-5)

    Google Scholar 

  20. Son JK, Jung SJ, Jung JH, Fang Z, Lee CS, Seo CS, Woo MH (2008) Anticancer constituents from the roots of Rubia cordifolia L. Chem Pharm Bull 56:213–216

    Article  CAS  Google Scholar 

  21. Srivastava S, Chowdhury AR, Maurya S (2017) Antimicrobial efficacy of methylated lac dye, an anthraquinone derivative. Indian J Microbiol 57:470–476

    Article  CAS  Google Scholar 

  22. Takahashi E, Fujita K, Kamataki T (2002) Inhibition of human cytochrome P450 1B1, 1A1 and 1A2 by antigenotoxic compounds, purpurin and alizarin. Mutat Res 508:147–156

    Article  CAS  Google Scholar 

  23. Vankar PS, Shanker R, Mahanta D, Tiwari SC (2008) Ecofriendly sonicator dyeing of cotton with Rubia cordifolia Linn. using biomordant. Dyes Pigm 76:207–212

    Article  Google Scholar 

  24. Wang SX, Hua HM, Wu LJ, Li X, Zhu TR (1992) Anthraquinones from the roots of Rubia cordifolia L. Yaoxue Xuebao 27:743–747 (in Chinese)

    CAS  Google Scholar 

  25. Westendorf J, Marquardt H, Poginsky B, Dominiak M, Schmidt J, Marquardt H (1990) Genotoxicity of naturally occurring hydroxyanthraquinones. Mutat Res 240:1–12

    Article  CAS  Google Scholar 

  26. Wölfle D, Schmutte C, Westendorf J (1990) Hydroxyanthraquinones as tumor promoters: enhancement of malignant transformation of C3H mouse fibroblasts and growth stimulation of primary rat hepatocytes. Cancer Res 50:6540–6544

    PubMed  Google Scholar 

  27. Zhang J, Shen X (1997) Antioxidant activities of baicalin, green tea polyphenols and alizarin in vitro and in vivo. J Nutr Environ Med 7:79–90

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by a grant from the National Research Foundation of Korea to RPP (NRF-2017R1C1B5018056), the Next-Generation BioGreen 21 Program JKS (SSAC, grant#: PJ013137), and YIP (SSAC, grant#: PJ013206).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jae Kyung Sohng.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 132 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nguyen, T.T.H., Han, J.M., Jung, H.J. et al. Regio-specific biotransformation of alizarin to alizarin methoxide with enhanced cytotoxicity against proliferative cells. J Ind Microbiol Biotechnol 47, 537–542 (2020). https://doi.org/10.1007/s10295-020-02286-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10295-020-02286-4

Keywords

Navigation