Skip to main content
Log in

The effect of sugar type and baking condition on formation of acrylamide in industrial rotary moulded biscuit

  • Original Paper
  • Published:
Journal of Food Measurement and Characterization Aims and scope Submit manuscript

Abstract

The purpose of current study is to monitor the Acrylamide (AA) contents in biscuits produced on the industrial scale. Effect of sugar types, inverted sugar syrup and sucrose, and baking conditions including time and temperature on the AA formation were studied in rotary moulded biscuit at the industrial scale. The AA content and the correlation between AA concentration and CIE color space parameters of L*a*b* and C index was studied. The AA formation was effectively decreased by replacement of the inverted sugar syrup of 2% w/w with sucrose of 1% w/w. The least AA content was found in samples made with 5% inverted sugar and 15% sucrose and the highest concentration of AA was observed in samples made with 9% inverted sugar and 13% sucrose. The effect of sugar on acrylamide formation was pronounced for inverted sugar and sucrose, expectedly. To assess the effect of baking condition, increasing the mean temperature of three zones of tunnel oven from 307 to 320 °C led to rising AA concentration, while the amount of AA reduced with increasing the mean oven temperature from above 320 °C. The results of the color analysis of biscuit samples revealed that a significant correlation was observed between AA concentration and brightness parameter L*, while parameters a*, b* and C did not show significant differences. The overall results suggest that the industrial rotary moulded biscuit without any difference in overall acceptability, but having the lowest acrylamide content can be manufactured by decreasing the baking mean temperature for a long time and also replacing inverted sugar syrup with sucrose.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. L. Ahrné, C.G. Andersson, P. Floberg, J. Rosén, H. Lingnert, Effect of crust temperature and water content on acrylamide formation during baking of white bread: steam and falling temperature baking. LWT Food Sci. Technol. 40(10), 1708–1715 (2007). https://doi.org/10.1016/j.lwt.2007.01.010

    Article  CAS  Google Scholar 

  2. T.M. Amrein, B. Schönbächler, F. Escher, R. Amadò, Factors influencing acrylamide formation in gingerbread. Adv. Exp. Med. Biol. 561, 431–446 (2005). https://doi.org/10.1007/0-387-24980-X_33

    Article  CAS  PubMed  Google Scholar 

  3. E. Bartkiene, I. Jakobsone, G. Juodeikiene, D. Vidmantiene, I. Pugajeva, V. Bartkevics, Study on the reduction of acrylamide in mixed rye bread by fermentation with bacteriocin-like inhibitory substances producing lactic acid bacteria in combination with Aspergillus niger glucoamylase. Food Control 30(1), 35–40 (2013). https://doi.org/10.1016/j.foodcont.2012.07.012

    Article  CAS  Google Scholar 

  4. A. Becalski, B.P.Y. Lau, D. Lewis, S.W. Seaman, Acrylamide in foods: occurrence, sources, and modeling. J. Agric. Food Chem. 51(3), 802–808 (2003). https://doi.org/10.1021/jf020889y

    Article  CAS  PubMed  Google Scholar 

  5. M. Biedermann, K. Grob, Model studies on acrylamide formation in potato, wheat flour and corn starch; ways to reduce acrylamide contents in bakery ware. Mitt. Lebensm. Hyg. 94, 406–422 (2003)

    CAS  Google Scholar 

  6. E. Bråthen, S.H. Knutsen, Effect of temperature and time on the formation of acrylamide in starch-based and cereal model systems, flat breads and bread. Food Chem. 92(4), 693–700 (2005). https://doi.org/10.1016/j.foodchem.2004.08.030

    Article  CAS  Google Scholar 

  7. L. Castle, M.-J. Campos, J. Gilbert, Determination of acrylamide monomer in hydroponically grown tomato fruits by capillary gas chromatography—mass spectrometry. J. Sci. Food Agric. 54(4), 549–555 (1991). https://doi.org/10.1002/jsfa.2740540406

    Article  CAS  Google Scholar 

  8. CIAA Acrylamide Toolbax (2006) Confederation of the food and drink industries of the EU, www.ciaa.be.

  9. A. Claus, M. Mongili, G. Weisz, A. Schieber, R. Carle, Impact of formulation and technological factors on the acrylamide content of wheat bread and bread rolls. J. Cereal Sci. 47(3), 546–554 (2008). https://doi.org/10.1016/j.jcs.2007.06.011

    Article  CAS  Google Scholar 

  10. Commission Regulation (EU) 2017/2158 (2017) Establishing mitigation measures and benchmark levels for the reduction of the presence of acrylamide in food. https://fooddrinkeurope.eu

  11. S. Eslamizad, F. Kobarfard, C. Tsitsimpikou, A. Tsatsakis, K. Tabib, H. Yazdanpanah, Health risk assessment of acrylamide in bread in Iran using LC-MS/MS. Food Chem. Toxicol. 126, 162–168 (2019). https://doi.org/10.1016/j.fct.2019.02.019

    Article  CAS  PubMed  Google Scholar 

  12. V. Gökmen, H.Z. Şenyuva, B. Dülek, A.E. Çetin, Computer vision-based image analysis for the estimation of acrylamide concentrations of potato chips and French fries. Food Chem. 101(2), 791–798 (2007). https://doi.org/10.1016/j.foodchem.2006.02.034

    Article  CAS  Google Scholar 

  13. V. Gökmen, Ö.Ç. Açar, G. Arribas-Lorenzo, F.J. Morales, Investigating the correlation between acrylamide content and browning ratio of model cookies. J. Food Eng. 87(3), 380–385 (2008). https://doi.org/10.1016/j.jfoodeng.2007.12.029

    Article  CAS  Google Scholar 

  14. V. Gökmen, Ö.Ç. Açar, H. Köksel, J. Acar, Effects of dough formula and baking conditions on acrylamide and hydroxymethylfurfural formation in cookies. Food Chem. 104(3), 1136–1142 (2007). https://doi.org/10.1016/j.foodchem.2007.01.008

    Article  CAS  Google Scholar 

  15. V. Gökmen, T.K. Palazoǧlu, Acrylamide formation in foods during thermal processing with a focus on frying. Food Bioprocess Technol. 1(1), 35–42 (2008). https://doi.org/10.1007/s11947-007-0005-2

    Article  Google Scholar 

  16. V. Gökmen, H.Z. Şenyuva, Study of colour and acrylamide formation in coffee, wheat flour and potato chips during heating. Food Chem. 99(2), 238–243 (2006). https://doi.org/10.1016/j.foodchem.2005.06.054

    Article  CAS  Google Scholar 

  17. V. Gökmen, H.Z. Şenyuva, J. Acar, K. Sarioǧlu, Determination of acrylamide in potato chips and crisps by high-performance liquid chromatography. J. Chromatogr. A 1088(1–2), 193–199 (2005). https://doi.org/10.1016/j.chroma.2004.10.094

    Article  CAS  PubMed  Google Scholar 

  18. M. Graf, T.M. Amrein, S. Graf, R. Szalay, F. Escher, R. Amadò, Reducing the acrylamide content of a semi-finished biscuit on industrial scale. LWT - Food Sci. Technol. 39(7), 724–728 (2006). https://doi.org/10.1016/j.lwt.2005.05.010

    Article  CAS  Google Scholar 

  19. N. Haase, B. Matthaeus, K. Vosmann, Acrylamide in baked products-state of the art. Getreide Mehl und Brot 57(3), 180–184 (2003)

    CAS  Google Scholar 

  20. International Agency on Research on Cancer (1994) IARC monographs on the evaluation of carcinogenic risk of chemicals to man. https://www.Iarc.fr.

  21. L.S. Jackson, F. Al-Taher, Effects of consumer food preparation on acrylamide formation. Adv. Exp. Med. Biol. 561, 447–465 (2005). https://doi.org/10.1007/0-387-24980-X_34

    Article  CAS  PubMed  Google Scholar 

  22. J. Keramat, A. LeBail, C. Prost, N. Soltanizadeh, Acrylamide in foods: chemistry and analysis. A review. Food Bioprocess Technol. 4, 340–363 (2011). https://doi.org/10.1007/s11947-010-0470-x

    Article  CAS  Google Scholar 

  23. J. Keramat, A. LeBail, C. Prost, M. Jafari, Acrylamide in baking products: a review article. Food Bioprocess Technol. 4, 530–543 (2011). https://doi.org/10.1007/s11947-010-0495-1

    Article  CAS  Google Scholar 

  24. E.J.M. Konings, P. Ashby, C.G. Hamlet, G.A.K. Thompson, Acrylamide in cereal and cereal products: a review on progress in level reduction. Food Addit. Contam. 24(SUPPL. 1), 47–59 (2007). https://doi.org/10.1080/02652030701242566

    Article  CAS  PubMed  Google Scholar 

  25. D.S. Mottram, B.L. Wedzicha, A.T. Dodson, Food chemistry: acrylamide is formed in the Maillard reaction. Nature 419(6906), 448–449 (2002). https://doi.org/10.1038/419448a

    Article  CAS  PubMed  Google Scholar 

  26. L.A. Mucci, H.O. Adami, The role of epidemiology in understanding the relationship between dietary acrylamide and cancer risk in humans. Adv. Exp. Med. Biol. 561, 39–47 (2005). https://doi.org/10.1007/0-387-24980-X_3

    Article  CAS  PubMed  Google Scholar 

  27. A. Mustafa, R. Andersson, J. Rosén, A. Kamal-Eldin, P. Åman, Factors influencing acrylamide content and color in rye crisp bread. J. Agric. Food Chem. 53(15), 5985–5989 (2005). https://doi.org/10.1021/jf050020q

    Article  CAS  PubMed  Google Scholar 

  28. F. Pedreschi, K. Kaack, K. Granby, Reduction of acrylamide formation in potato slices during frying. LWT - Food Sci. Technol. 37(6), 679–685 (2004). https://doi.org/10.1016/j.lwt.2004.03.001

    Article  CAS  Google Scholar 

  29. B.J. Petersen, N. Tran, Exposure to acrylamide, Chemistry and Safety of Acrylamide in Food (Springer, Dordrecht, 2006), pp. 63–76. https://doi.org/10.1007/0-387-24980-x_5

    Chapter  Google Scholar 

  30. P. Sadd, C. Hamlet, The formation of acrylamide in UK cereal products. Adv. Exp. Med. Biol. 561, 415–429 (2005). https://doi.org/10.1007/0-387-24980-X_32

    Article  CAS  PubMed  Google Scholar 

  31. F. Shakeri, S. Shakeri, S. Ghasemi, A.D. Troise, A. Fiore, Effects of formulation and baking process on acrylamide formation in Kolompeh, a traditional cookie in Iran. J. Chem. (2019). https://doi.org/10.1155/2019/1425098

    Article  Google Scholar 

  32. M. Springer, T. Fischer, A. Lehrack, W. Freund, Development of acrylamide in baked products. Getreide Mehl und Brot 57(5), 274–278 (2003)

    CAS  Google Scholar 

  33. R.H. Stadler, Acrylamide formation in different foods and potential strategies for reduction. Adv. Exp. Med. Biol. 561, 157–169 (2005). https://doi.org/10.1007/0-387-24980-X_13

    Article  CAS  PubMed  Google Scholar 

  34. N. Surdyk, J. Rosén, R. Andersson, P. Åman, Effects of asparagine, fructose, and baking conditions on acrylamide content in yeast-leavened wheat bread. J. Agric. Food Chem. 52(7), 2047–2051 (2004). https://doi.org/10.1021/jf034999w

    Article  CAS  PubMed  Google Scholar 

  35. Swedish Food Agency (2002) Information about acrylamide in food report [on line]. https://www.livsmedelsverket.se/en/food-and-content/oonskade-amnen/akrylamid.

  36. M. Törnqvist, Acrylamide in food: the discovery and its implications—a historical perspective. Adv. Exp. Med. Biol. 561, 1–19 (2005). https://doi.org/10.1007/0-387-24980-X_1

    Article  PubMed  Google Scholar 

  37. M. Vass, T.M. Amrein, B. Schonbachler, F. Escher, R. Amado, Ways to reduce acrylamide formation in cracker products. Czech J. Food Sci. 22, 19–21 (2004)

    Article  CAS  Google Scholar 

  38. R. Weisshaar, B.G.-D. Lebensmittel-Rundschau, Formation of Acrylamide in Heated Potato Products-Model Experiments Pointing to Asparagine as Precursor (Behr’s Verlag, Hamburg, 2002)

    Google Scholar 

  39. A. Yasuhara, Y. Tanaka, M. Hengel, T. Shibamoto, Gas chromatographic investigation of acrylamide formation in browning model systems. J. Agric. Food Chem. 51(14), 3999–4003 (2003). https://doi.org/10.1021/jf0300947

    Article  CAS  PubMed  Google Scholar 

  40. Y. Zhu, G. Li, Y. Duan, S. Chen, C. Zhang, Y. Li, Application of the standard addition method for the determination of acrylamide in heat-processed starchy foods by gas chromatography with electron capture detector. Food Chem. 109(4), 899–908 (2008). https://doi.org/10.1016/j.foodchem.2008.01.020

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Isfahan Shirinak Biscuit Factory and appreciate the assistance of Dr.Sadeghian. Moreover, special thanks to the “Food and Drug Administration, Isfahan Medical Department”. This research did not receive any specific grant from funding agencies in the public.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Farinaz Aarabi.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aarabi, F., Seyedain Ardebili, M. The effect of sugar type and baking condition on formation of acrylamide in industrial rotary moulded biscuit. Food Measure 14, 2230–2239 (2020). https://doi.org/10.1007/s11694-020-00470-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11694-020-00470-9

Keywords

Navigation