Skip to main content

Advertisement

Log in

Study on the pyrolysis behaviour of the macroalga Ulva prolifera

  • 10th Asia-Pacific Conference on Algal Biotechnology
  • Published:
Journal of Applied Phycology Aims and scope Submit manuscript

Abstract

The outbreak of Ulva prolifera as a marine waste biomass costs a huge amount of manpower and sources for remediation. The effective utilisation of U. prolifera would be mutually beneficial for environmental protection and production of bio-based energy or chemicals. Herein, the pyrolysis behaviour of the main constituents in U. prolifera was investigated to provide valuable data for its further valorisation. The cleavage of thermally unstable sulphated polysaccharides initial occurred between 180 and 200 °C. Uronic acid fraction in hemicellulose degraded at 180–240 °C, releasing formic acid (FA) and oligosaccharides. The complete depolymerisation of hemicellulosic polysaccharides generated rhamnose (Rha) at 300 °C. Above 300 °C, the formation of 5-methyl furfural originated from the dehydration of Rha and the pyrolytic reactions of cellulose. Cellulose with better thermal stability slowly underwent an intermolecular dehydration process at 160 to 240 °C and needed higher temperature for full conversion. The favourable pyrolysis temperature range of the specific constituents and the corresponding detailed pyrolysis characteristics provided an opportunity to obtain value-added chemicals with high selectivity and then increased the utilisation value of U. prolifera.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Azizi K, Keshavarz MM, Abedini NH (2018) A review on bio-fuel production from microalgal biomass by using pyrolysis method. Renew Sust Energ Rev 82:3046–3059

    Article  CAS  Google Scholar 

  • Balat M (2008) Mechanisms of thermochemical biomass conversion processes. Part 1: reactions of pyrolysis. Energ Source Part A 30:620–635

    Article  CAS  Google Scholar 

  • Bird MI, Wurster CM, de Paula Silva PH, Bass AM, de Nys R (2011) Algal biochar–production and properties. Bioresour Technol 102:1886–1891

    Article  CAS  PubMed  Google Scholar 

  • Bridgwater AV (2003) Renewable fuels and chemicals by thermal processing of biomass. Chem Eng J 91:87–102

    Article  CAS  Google Scholar 

  • Buelens LC, Galvita VV, Poelman H, Detavernier C, Marin GB (2016) Super-dry reforming of methane intensifies CO2 utilization via Le Chatelier’s principle. Science 354:449–452

    Article  CAS  PubMed  Google Scholar 

  • Ceylan S, Goldfarb JL (2015) Green tide to green fuels: TG–FTIR analysis and kinetic study of Ulva prolifera pyrolysis. Energy Convers Manag 101:263–270

    Article  CAS  Google Scholar 

  • Ceylan S, Topcu Y, Ceylan Z (2014) Thermal behaviour and kinetics of alga Polysiphonia elongata biomass during pyrolysis. Bioresour Technol 171:193–198

    Article  CAS  PubMed  Google Scholar 

  • Chang YM, Tsai WT, Li MH (2015) Chemical characterization of char derived from slow pyrolysis of microalgal residue. J Anal Appl Pyrol 111:88–93

    Article  CAS  Google Scholar 

  • Chen YW, Lee HV, Juan JC, Phang S-M (2016) Production of new cellulose nanomaterial from red algae marine biomass Gelidium elegans. Carbohydr Polym 151:1210–1219

    Article  CAS  PubMed  Google Scholar 

  • Collard FX, Blin J (2014) A review on pyrolysis of biomass constituents: mechanisms and composition of the products obtained from the conversion of cellulose, hemicelluloses and lignin. Renew Sust Energ Rev 38:594–608

    Article  CAS  Google Scholar 

  • Demirbas A (2007) The influence of temperature on the yields of compounds existing in bio-oils obtained from biomass samples via pyrolysis. Fuel Process Technol 88:591–597

    Article  CAS  Google Scholar 

  • Demirbas A (2010) Use of algae as biofuel sources. Energy Convers Manag 51:2738–2749

    Article  CAS  Google Scholar 

  • El Achaby M, Kassab Z, Aboulkas A, Gaillard C, Barakat A (2018) Reuse of red algae waste for the production of cellulose nanocrystals and its application in polymer nanocomposites. Int J Biol Macromol 106:681–691

    Article  PubMed  CAS  Google Scholar 

  • Gao W, Chen K, Zeng J, Xu J, Wang B (2017) Thermal pyrolysis characteristics of macroalgae Cladophora glomerata. Bioresour Technol 243:212–217

    Article  CAS  PubMed  Google Scholar 

  • Guerrero P, Etxabide A, Leceta I, Peñalba M, de la Caba K (2014) Extraction of agar from Gelidium sesquipedale (Rhodophyta) and surface characterization of agar based films. Carbohydr Polym 99:491–498

  • Hu Z, Ma X, Chen C (2012) A study on experimental characteristic of microwave-assisted pyrolysis of microalgae. Bioresour Technol 107:487–493

    Article  CAS  PubMed  Google Scholar 

  • Hua MY, Li BX (2016) Co-pyrolysis characteristics of the sugarcane bagasse and Enteromorpha prolifera. Energy Convers Manag 120:238–246

    Article  CAS  Google Scholar 

  • Indira P, Biswajit R (2012) Commercial and industrial applications of microalgae-a review. J Algal Biomass Utln 3:89–100

    Google Scholar 

  • Kazharska M, Ding Y, Arif M, Jiang F, Cong Y, Wang H, Zhao C, Liu X, Chi Z, Liu C (2019) Cellulose nanocrystals derived from Enteromorpha prolifera and their use in developing bionanocomposite films with water-soluble polysaccharides extracted from E. prolifera. Int J Biol Macromol 134:390–396

    Article  CAS  PubMed  Google Scholar 

  • Kunov-Kruse AJ, Riisager A, Saravanamurugan S, Berg RW, Kristensen SB, Fehrmann R (2013) Revisiting the Brønsted acid catalysed hydrolysis kinetics of polymeric carbohydrates in ionic liquids by in situ ATR-FTIR spectroscopy. Green Chem 15:2843–2848

    Article  CAS  Google Scholar 

  • Li D, Chen L, Zhao J, Zhang X, Wang Q, Wang H, Ye N (2010) Evaluation of the pyrolytic and kinetic characteristics of Enteromorpha prolifera as a source of renewable bio-fuel from the Yellow Sea of China. Chem Eng Res Des 88:647–652

    Article  CAS  Google Scholar 

  • Li B, Liu S, Xing R, Li K, Li R, Qin Y, Wang X, Wei Z, Li P (2013) Degradation of sulfated polysaccharides from Enteromorpha prolifera and their antioxidant activities. Carbohydr Polym 92:1991–1996

    Article  CAS  PubMed  Google Scholar 

  • Li H, Li L, Zhang R, Tong D, Hu C (2014) Fractional pyrolysis of cyanobacteria from water blooms over HZSM-5 for high quality bio-oil production. J Energy Chem 23:732–741

    Article  Google Scholar 

  • Li L, Zhang R, Tong D, Hu C (2015) Fractional pyrolysis of algae and model compounds. Chin J Chem Phys 28:525–532

    Article  CAS  Google Scholar 

  • Ma Y, Wang J, Zhang Y (2018) TG-FTIR study on pyrolysis of Enteromorpha prolifera. Biomass Convers Bior 8:151–157

    Article  CAS  Google Scholar 

  • Marcilla A, Catalá L, García-Quesada JC, Valdés FJ, Hernández MR (2013) A review of thermochemical conversion of microalgae. Renew Sust Energ Rev 27:11–19

    Article  CAS  Google Scholar 

  • Miller FA, Wilkins CH (1952) Infrared spectra and characteristic frequencies of inorganic ions. Anal Chem 24:1253–1294

    Article  CAS  Google Scholar 

  • Montingelli ME, Tedesco S, Olabi AG (2015) Biogas production from algal biomass: a review. Renew Sust Energ Rev 43:961–972

    Article  CAS  Google Scholar 

  • Nelson WL, Engelder CJ (1925) The thermal decomposition of formic acid. J Phys Chem 30:470–475

    Article  Google Scholar 

  • Pandey KK (1999) A study of chemical structure of soft and hardwood and wood polymers by FTIR spectroscopy. J Appl Polym Sci 71:1969–1975

    Article  CAS  Google Scholar 

  • Peng W, Wu Q, Tu P, Zhao N (2001) Pyrolytic characteristics of microalgae as renewable energy source determined by thermogravimetric analysis. Bioresour Technol 80:1–7

    Article  CAS  PubMed  Google Scholar 

  • Peng F, Ren JL, Xu F, Bian J, Peng P, Sun RC (2010) Comparative studies on the physico-chemical properties of hemicelluloses obtained by DEAE-cellulose-52 chromatography from sugarcane bagasse. Food Res Int 43:683–693

    Article  CAS  Google Scholar 

  • Ray B (2006) Polysaccharides from Enteromorpha compressa: isolation, purification and structural features. Carbohydr Polym 66:408–416

    Article  CAS  Google Scholar 

  • Rees NV, Compton RG (2011) Sustainable energy: a review of formic acid electrochemical fuel cells. J Solid State Electr 15:2095–2100

    Article  CAS  Google Scholar 

  • Tang J, Zhu L, Fu X, Dai J, Guo X, Hu C (2017) Insights into the kinetics and reaction network of aluminum chloride-catalyzed conversion of glucose in NaCl–H2O/THF biphasic system. ACS Catal 7:256–266

    Article  CAS  Google Scholar 

  • Van de Velden M, Baeyens J, Brems A, Janssens B, Dewil R (2010) Fundamentals, kinetics and endothermicity of the biomass pyrolysis reaction. Renew Energy 35:232–242

    Article  CAS  Google Scholar 

  • van Putten R-J, van der Waal JC, de Jong E, Rasrendra CB, Heeres HJ, de Vries JG (2013) Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chem Rev 113:1499–1597

    Article  PubMed  CAS  Google Scholar 

  • Wang S, Ru B, Lin H, Sun W (2015) Pyrolysis behaviors of four O-acetyl-preserved hemicelluloses isolated from hardwoods and softwoods. Fuel 150:243–251

    Article  CAS  Google Scholar 

  • Wang S, Dai G, Yang H, Luo Z (2017a) Lignocellulosic biomass pyrolysis mechanism: a state-of-the-art review. Prog Energy Combust 62:33–86

    Article  Google Scholar 

  • Wang S, Hu Y, Uzoejinwa BB, Cao B, He Z, Wang Q, Xu S (2017b) Pyrolysis mechanisms of typical seaweed polysaccharides. J Anal Appl Pyrol 124:373–383

    Article  CAS  Google Scholar 

  • Wang X, Sheng L, Yang X (2017c) Pyrolysis characteristics and pathways of protein, lipid and carbohydrate isolated from microalgae Nannochloropsis sp. Bioresour Technol 229:119–125

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Liu F, Liu X, Shi S, Bi Y, Moejes FW (2019) Comparative transcriptome analysis of four co-occurring Ulva species for understanding the dominance of Ulva prolifera in the Yellow Sea green tides. J Appl Phycol 31:3303–3316

    Article  Google Scholar 

  • Wu K, Liu J, Wu Y, Chen Y, Li Q, Xiao X, Yang M (2014) Pyrolysis characteristics and kinetics of aquatic biomass using thermogravimetric analyzer. Bioresour Technol 163:18–25

    Article  CAS  PubMed  Google Scholar 

  • Yang H, Yan R, Chen H, Lee DH, Zheng C (2007) Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel 86:1781–1788

    Article  CAS  Google Scholar 

  • Yang C, Li R, Zhang B, Qiu Q, Wang B, Yang H, Ding Y, Wang C (2019) Pyrolysis of microalgae: a critical review. Fuel Process Technol 186:53–72

    Article  CAS  Google Scholar 

  • Yu KL, Lau BF, Show PL, Ong HC, Ling TC, Chen W-H, Ng EP, Chang J-S (2017) Recent developments on algal biochar production and characterization. Bioresour Technol 246:2–11

    Article  CAS  PubMed  Google Scholar 

  • Yuan X, Zheng J, Ren L, Jiao S, Feng C, Du Y, Liu H (2019) Enteromorpha prolifera oligomers relieve pancreatic injury in streptozotocin (STZ)-induced diabetic mice. Carbohydr Polym 206:403–411

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Li L, Tong D, Hu C (2016) Microwave-enhanced pyrolysis of natural algae from water blooms. Bioresour Technol 212:311–317

    Article  CAS  PubMed  Google Scholar 

  • Zhang R, Chen Y, Zhou Y, Tong D, Hu C (2019) Selective conversion of hemicellulose in macroalgae Enteromorpha prolifera to rhamnose. ACS Omega 4:7023–7028

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhao H, Yan H, Liu M, Zhang C, Qin S (2011) Pyrolytic characteristics and kinetics of the marine green tide macroalgae, Enteromorpha prolifera. Chin J Oceanol Limnol 29:996–1001

    Article  CAS  Google Scholar 

  • Zhao H, Yan HX, Liu M, Zhang CW, Sun BB, Dong SS, Qin S (2012) The pyrolysis characteristics and kinetics of the marine macroalgae Enteromorpha prolifera using a thermogravimetric analyzer. Energ Source Part A 34:1958–1966

    Article  Google Scholar 

  • Zhao H, Yan HX, Liu M, Sun BB, Zhang Y, Dong SS, Qi LB, Qin S (2013) Production of bio-oil from fast pyrolysis of macroalgae Enteromorpha prolifera powder in a free-fall reactor. Energ Source Part A 35:859–867

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The Analytical and Testing Center of Sichuan University is greatly acknowledged for the characterisation of materials.

Funding

This work was supported by the National Key R&D Program of China (2018YFB1501404), the 111 program (B17030), and Fundamental Research Funds for the Central Universities.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Changwei Hu.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Supplementary Material

. The following additional data can be found in Online Resource: The TG-DTG curve of U. prolifera; Product yields of pyrolytic U. prolifera at 160–240 °C. (DOCX 168 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, R., Zhou, Y. & Hu, C. Study on the pyrolysis behaviour of the macroalga Ulva prolifera. J Appl Phycol 33, 91–99 (2021). https://doi.org/10.1007/s10811-020-02157-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10811-020-02157-6

Keywords

Navigation