Skip to main content
Log in

Characterization of ballast particle’s movement associated with loading cycle, magnitude and frequency using SmartRock sensors

  • Original Paper
  • Published:
Granular Matter Aims and scope Submit manuscript

Abstract

SmartRock has recently been adopted in obtaining the particle-scale characteristics of ballast track and gives microscopic explanation of track performance under cyclic loads, such as degradation and reinforcement. We notice that the contact state of individual ballast particles changes with loading cycles, which in reverse gives rise to different particle movements. The changes of contact state and particle movements may accumulate as loading cycle increases and could be considerable. This makes the response of individual particles uncertain and thus brings practical difficulties in evaluating the performance of ballast track via particle-scale characteristics, especially for long-term loading. In order to learn more about the response uncertainty of individual particles, this study conducts a full size model test to investigate the variation of particle movement and inter-particle normal contact force with loading cycle, amplitude as well as frequency by using SmartRocks. The equivalent axle load ranges from 14 to 36 t, the frequency of the cyclic loading varies from 1 to 18 Hz. Two smart rocks were placed below the sleeper end and the shoulder region respectively. It is found that the long-term variation of particle’s movements and contact force with loading cycle show obvious fluctuation due to the continuous accumulated changes of particle’s contact state. While particle’s movements are generally stable during short-term loading. The movements of SmartRock beneath sleeper end are positively correlated with loading magnitude and frequency, nevertheless also shows a characteristic independent on loading cycles, magnitude as well as frequency: particles’ rotation in horizontal plane is mainly permanent rotation (accumulated rotation), while particle’s rotation in planes perpendicular to the lateral and longitudinal directions is mainly recoverable rotation. The influences of loading magnitude and frequency on ballast particle movements are found different. The results provide effective particle-scale indicators for investigations related to ballast track.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

References

  1. Fu, L., Xiao, J., Zhou, S., Zhang, D., Wang, Y., Liu. W., et al.: Roadbed improvement of an existing railway line located in cold region by reusing crushed deteriorated ballast. Bearing Capacity of Roads, Railways and Airfields, Athens, Greece: CRC Press, pp. 1845–1850. (2017). https://doi.org/10.1201/9781315100333-262

  2. Lackenby, J., Indraratna, B., McDowell, G., Christie, D.: Effect of confining pressure on ballast degradation and deformation under cyclic traxial loading. Geotechnique 57, 527–536 (2007). https://doi.org/10.1680/geot.2007.57.6.527

    Article  Google Scholar 

  3. Sun, Q.D., Indraratna, B., Nimbalkar, S.: Effect of cyclic loading frequency on the permanent deformation and degradation of railway ballast. Géotechnique 64, 746–751 (2014). https://doi.org/10.1680/geot.14.T.015

    Article  Google Scholar 

  4. Kashani, H.F.: Fouling and water content influence on the ballast deformation properties. Constr. Build. Mater. 15, 881–895 (2018)

    Article  Google Scholar 

  5. Hudson, A., Watson, G., Le Pen, L., Powrie, W.: Remediation of mud pumping on a ballasted railway track. Procedia Eng. 143, 1043–1050 (2016). https://doi.org/10.1016/j.proeng.2016.06.103

    Article  Google Scholar 

  6. Liu, S., Huang, H., Qiu, T., Kerchof, B.: Characterization of ballast particle movement at mud spot. J. Mater. Civ. Eng. 31, 04018339 (2019). https://doi.org/10.1061/(ASCE)MT.1943-5533.0002545

    Article  Google Scholar 

  7. Kashani, H.F., Hyslip, J.P., Ho, C.L.: Laboratory evaluation of railroad ballast behavior under heavy axle load and high traffic conditions. Transp. Geotech. 11, 69–81 (2017). https://doi.org/10.1016/j.trgeo.2017.04.002

    Article  Google Scholar 

  8. Jing, G., Ding, D., Liu, X.: High-speed railway ballast flight mechanism analysis and risk management—a literature review. Constr. Build. Mater. 223, 629–642 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.194

    Article  Google Scholar 

  9. Somaschini, C., Rocchi, D., Schito, P., Tomasini, G.: A new methodology for assessing the actual number of impacts due to the ballast-lifting phenomenon. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit. 1, 95 (2019). https://doi.org/10.1177/0954409719866987

    Article  Google Scholar 

  10. Liu, S., Huang, H., Qiu, T., Kwon, J.: Effect of geogrid on railroad ballast particle movement. Transp. Geotech. 9, 110–122 (2016). https://doi.org/10.1016/j.trgeo.2016.08.003

    Article  Google Scholar 

  11. Indraratna, B., Hussaini, S.K.K., Vinod, J.S.: The lateral displacement response of geogrid-reinforced ballast under cyclic loading. Geotext. Geomembr. 39, 20–29 (2013). https://doi.org/10.1016/j.geotexmem.2013.07.007

    Article  Google Scholar 

  12. Jing, G., Aela, P., Fu, H.: The contribution of ballast layer components to the lateral resistance of ladder sleeper track. Constr. Build. Mater. 202, 796–805 (2019). https://doi.org/10.1016/j.conbuildmat.2019.01.017

    Article  Google Scholar 

  13. Gao, Y., Qian, Y., Stoffels, S.M., Huang, H., Liu, S.: Characterization of railroad crosstie movements by numerical modeling and field investigation. Constr. Build. Mater. 131, 542–551 (2017). https://doi.org/10.1016/j.conbuildmat.2016.11.067

    Article  Google Scholar 

  14. Zeng, K., Qiu, T., Bian, X., Xiao, M., Huang, H.: Identification of ballast condition using SmartRock and pattern recognition. Constr. Build. Mater. 221, 50–59 (2019). https://doi.org/10.1016/j.conbuildmat.2019.06.049

    Article  Google Scholar 

  15. Abadi, T., Pen, L.L., Zervos, A., Powrie, W.: Improving the performance of railway tracks through ballast interventions. Proc. Inst. Mech. Eng. Part F J. Rail Rapid Transit 232, 337–355 (2018). https://doi.org/10.1177/0954409716671545

    Article  Google Scholar 

  16. Abadi, T., Pen, L.L., Zervos, A., Powrie, W.: Effect of sleeper interventions on railway track performance. J. Geotech. Geoenviron. Eng. 145, 04019009 (2019). https://doi.org/10.1061/(ASCE)GT.1943-5606.0002022

    Article  Google Scholar 

  17. Yu, Z., Woodward, P.K., Laghrouche, O., Connolly, D.P.: True triaxial testing of geogrid for high speed railways. Transp. Geotech. 20, 100247 (2019). https://doi.org/10.1016/j.trgeo.2019.100247

    Article  Google Scholar 

  18. Qian, Y., Mishra, D., Tutumluer, E., Kazmee, H.A.: Characterization of geogrid reinforced ballast behavior at different levels of degradation through triaxial shear strength test and discrete element modeling. Geotext. Geomembr. 43, 393–402 (2015). https://doi.org/10.1016/j.geotexmem.2015.04.012

    Article  Google Scholar 

  19. Petriaev, A., Konon, A., Solovyov, V.: Performance of ballast layer reinforced with geosynthetics in terms of heavy axle load operation. Proc. Eng. 189, 654–659 (2017). https://doi.org/10.1016/j.proeng.2017.05.104

    Article  Google Scholar 

  20. Jing, G., Qie, L., Markine, V., Jia, W.: Polyurethane reinforced ballasted track: review, innovation and challenge. Constr. Build. Mater. 208, 734–748 (2019). https://doi.org/10.1016/j.conbuildmat.2019.03.031

    Article  Google Scholar 

  21. Brown, S.F., Kwan, J., Thom, N.H.: Identifying the key parameters that influence geogrid reinforcement of railway ballast. Geotext. Geomembr. 25, 326–335 (2007). https://doi.org/10.1016/j.geotexmem.2007.06.003

    Article  Google Scholar 

  22. Indraratna, B., Thakur, P.K., Vinod, J.S.: Experimental and numerical study of railway ballast behavior under cyclic loading. Int. J. Geomech. 10, 136–144 (2010). https://doi.org/10.1061/(ASCE)GM.1943-5622.0000055

    Article  Google Scholar 

  23. Benedetto, F., Tosti, F., Alani, A.M.: An entropy-based analysis of GPR data for the assessment of railway ballast conditions. IEEE Trans. Geosci. Remote Sens. 55, 3900–3908 (2017). https://doi.org/10.1109/TGRS.2017.2683507

    Article  ADS  Google Scholar 

  24. Sussmann, T.R., Thompson, H.B., Stark, T.D., Wilk, S.T., Ho, C.L.: Use of seismic surface wave testing to assess track substructure condition. Constr. Build. Mater. 155, 1250–1255 (2017). https://doi.org/10.1016/j.conbuildmat.2017.02.077

    Article  Google Scholar 

  25. Li, X., Li, X.-S.: Micro-macro quantification of the internal structure of granular materials. J. Eng. Mech. 135, 641–656 (2009). https://doi.org/10.1061/(ASCE)0733-9399(2009)135:7(641)

    Article  Google Scholar 

  26. Guo, P.: Critical length of force chains and shear band thickness in dense granular materials. Acta Geotech. 7, 41–55 (2012). https://doi.org/10.1007/s11440-011-0154-3

    Article  Google Scholar 

  27. Kuhn, M.R., Bagi, K.: Specimen size effect in discrete element simulations of granular assemblies. J. Eng. Mech. 135, 485–492 (2009). https://doi.org/10.1061/(ASCE)0733-9399(2009)135:6(485)

    Article  Google Scholar 

  28. Shen, H.: Sample size effects on constitutive relations of granular materials—a numerical simulation study with two-dimensional flow of disks. J. Eng. Mech. 127, 978–986 (2001). https://doi.org/10.1061/(ASCE)0733-9399(2001)127:10(978)

    Article  Google Scholar 

  29. Zhai, W.M., Wang, K.Y., Lin, J.H.: Modelling and experiment of railway ballast vibrations. J. Sound Vib. 270, 673–683 (2004). https://doi.org/10.1016/S0022-460X(03)00186-X

    Article  ADS  Google Scholar 

  30. Liu, S., Qiu, T., Qian, Y., Huang, H., Tutumluer, E., Shen, S.: Simulations of large-scale triaxial shear tests on ballast aggregates using sensing mechanism and real-time (SMART) computing. Comput. Geotech. 110, 184–198 (2019). https://doi.org/10.1016/j.compgeo.2019.02.010

    Article  Google Scholar 

  31. Huang, H., Liu, S., Qiu, T.: Identification of railroad ballast fouling through particle movements. J. Geotech. Geoenviron. Eng. 144, 02818001 (2018). https://doi.org/10.1061/(ASCE)GT.1943-5606.0001846

    Article  Google Scholar 

  32. Liu, S., Huang, H., Qiu, T., Gao, L.: Comparison of laboratory testing using smartrock and discrete element modeling of ballast particle movement. J. Mater. Civ. Eng. 29, D6016001 (2017). https://doi.org/10.1061/(ASCE)MT.1943-5533.0001540

    Article  Google Scholar 

  33. Zhang, X., Zhao, C., Zhai, W.: Importance of load frequency in applying cyclic loads to investigate ballast deformation under high-speed train loads. Soil Dyn. Earthq. Eng. 120, 28–38 (2019). https://doi.org/10.1016/j.soildyn.2019.01.023

    Article  Google Scholar 

  34. Bian, X., Jiang, H., Chang, C., Hu, J., Chen, Y.: Track and ground vibrations generated by high-speed train running on ballastless railway with excitation of vertical track irregularities. Soil Dyn. Earthq. Eng. 76, 29–43 (2015). https://doi.org/10.1016/j.soildyn.2015.02.009

    Article  Google Scholar 

  35. Wang, X., Shen, S., Huang, H., Almeida, L.C.: Characterization of particle movement in superpave gyratory compactor at meso-scale using SmartRock sensors. Constr. Build. Mater. 175, 206–214 (2018). https://doi.org/10.1016/j.conbuildmat.2018.04.146

    Article  ADS  Google Scholar 

  36. Guo, P., Su, X.: Shear strength, interparticle locking, and dilatancy of granular materials. Can. Geotech. J. 44, 579–591 (2007). https://doi.org/10.1139/t07-010

    Article  Google Scholar 

  37. Koike, Y., Nakamura, T., Hayano, K., Momoya, Y.: Numerical method for evaluating the lateral resistance of sleepers in ballasted tracks. Soils Found. 54, 502–514 (2014). https://doi.org/10.1016/j.sandf.2014.04.014

    Article  Google Scholar 

  38. Liu, H., Xiao, J., Wang, P., Liu, G., Gao, M., Li, S.: Experimental investigation of the characteristics of a granular ballast bed under cyclic longitudinal loading. Constr. Build. Mater. 163, 214–224 (2018). https://doi.org/10.1016/j.conbuildmat.2017.12.037

    Article  Google Scholar 

  39. Leng, W., Mei, H., Nie, R., Zhao, C., Liu, W., Su, Y.: Full-scale model test of heavy haul railway subgrade. J. Vib. Shock 37, 1–6 (2018). https://doi.org/10.13465/j.cnki.jvs.2018.4.001

    Article  Google Scholar 

  40. Bian, X., Jiang, H., Cheng, C., Chen, Y., Chen, R., Jiang, J.: Full-scale model testing on a ballastless high-speed railway under simulated train moving loads. Soil Dyn. Earthq. Eng. 66, 368–384 (2014). https://doi.org/10.1016/j.soildyn.2014.08.003

    Article  Google Scholar 

  41. Priest, J.A., Powrie, W., Yang, L., Grabe, P.J., Clayton, C.R.I.: Measurements of transient ground movements below a ballasted railway line. Géotechnique 60, 667–677 (2010). https://doi.org/10.1680/geot.7.00172

    Article  Google Scholar 

  42. Liu, S.B., Peyronnel, A., Wang, Q.J., Keer, L.M.: An extension of the Hertz theory for three-dimensional coated bodies. Tribol. Lett. 18, 303–314 (2005). https://doi.org/10.1007/s11249-004-2757-4

    Article  Google Scholar 

  43. Zhou, S., Guo, P., Stolle, D.F.E.: Interaction model for “shelled particles” and small-strain modulus of granular materials. J. Appl. Mech. 85, 101001 (2018). https://doi.org/10.1115/1.4040408

    Article  ADS  Google Scholar 

  44. Selig, E.T.: Tensile zone effects on performance of layered systems. Géotechnique 37, 247–254 (1987). https://doi.org/10.1680/geot.1987.37.3.247

    Article  Google Scholar 

Download references

Acknowledgements

The NSFC (National Natural Science Foundation of China) Program, Grant NO.51708423 and NO. 51778485 are greatly appreciated for providing financial support for this research. The authors also thank Mr. Jiangjie Shi, Weixiong Xiao, Youwen Wang and Yizhe Xu for their assistance in the conduction of the laboratory test.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Longlong Fu or Shunhua Zhou.

Ethics declarations

Conflict of interest

We declare that the authors have no conflicts of interest to this work.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fu, L., Tian, Z., Zhou, S. et al. Characterization of ballast particle’s movement associated with loading cycle, magnitude and frequency using SmartRock sensors. Granular Matter 22, 63 (2020). https://doi.org/10.1007/s10035-020-01029-7

Download citation

  • Received:

  • Published:

  • DOI: https://doi.org/10.1007/s10035-020-01029-7

Keywords

Navigation