Skip to main content
Log in

A p-adaptive Matrix-Free Discontinuous Galerkin Method for the Implicit LES of Incompressible Transitional Flows

  • Published:
Flow, Turbulence and Combustion Aims and scope Submit manuscript

Abstract

In recent years Computational Fluid Dynamics (CFD) has become a widespread practice in industry. The growing need to simulate off-design conditions, characterized by massively separated flows, strongly promoted research on models and methods to improve the computational efficiency and to bring the practice of Scale Resolving Simulations (SRS), like the Large Eddy Simulation (LES), to an industrial level. Among the possible approaches to the SRS, an appealing choice is to perform Implicit LES (ILES) via a high-order Discontinuous Galerkin (DG) method, where the favourable numerical dissipation of the space discretization scheme plays directly the role of a subgrid-scale model. To reduce the large CPU time for ILES, implicit time integrators, that allows for larger time steps than explicit schemes, can be considered. The main drawbacks of implicit time integration in a DG framework are represented by the large memory footprint, the large CPU time for the operator assembly and the difficulty to design highly scalable preconditioners for the linear solvers. In this paper, which aims to significantly reduce the memory requirement and CPU time without spoiling the high-order accuracy of the method, we rely on a p-adaptive algorithm suited for the ILES of turbulent flows and an efficient matrix-free iterative linear solver based on a cheap p-multigrid preconditioner and a Flexible GMRES method. The performance and accuracy of the method have been assessed by considering the following test cases: (1) the T3L test case of the ERCOFTAC suite, a rounded leading edge flat plate at \({\mathrm{Re}}_D=3450\); (2) the flow past a sphere at \(\mathrm{Re}_D=300\); (3) the flow past a circular cylinder at \(\mathrm{Re}_D=3900\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17

Similar content being viewed by others

References

  • Alam, M., Sandham, N.D.: Direct numerical simulation of ‘short’ laminar separation bubbles with turbulent reattachment. J. Fluid Mech. 410, 1–28 (2000). https://doi.org/10.1017/S0022112099008976

    Article  MATH  Google Scholar 

  • Arnold, D.N., Brezzi, F., Cockburn, B., Marini, D.: Unified analysis of discontinuous Galerkin methods for elliptic problems. SIAM J. Numer. Anal. 39(5), 1749–1779 (2002)

    Article  MathSciNet  Google Scholar 

  • Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc Web page. https://www.mcs.anl.gov/petsc (2019)

  • Balay, S., Abhyankar, S., Adams, M.F., Brown, J., Brune, P., Buschelman, K., Dalcin, L., Dener, A., Eijkhout, V., Gropp, W.D., Karpeyev, D., Kaushik, D., Knepley, M.G., May, D.A., McInnes, L.C., Mills, R.T., Munson, T., Rupp, K., Sanan, P., Smith, B.F., Zampini, S., Zhang, H., Zhang, H.: PETSc users manual. Tech. Rep. ANL-95/11 - Revision 3.12, Argonne National Laboratory (2019). https://www.mcs.anl.gov/petsc

  • Balay, S., Gropp, W.D., McInnes, L.C., Smith, B.F.: Efficient management of parallelism in object oriented numerical software libraries. In: Arge, E., Bruaset, A.M., Langtangen, H.P. (eds.) Modern Software Tools in Scientific Computing, pp. 163–202. Birkhäuser Press, Boston (1997)

    Chapter  Google Scholar 

  • Bassi, F., Botti, L., Colombo, A., Crivellini, A., De Bartolo, C., Franchina, N., Ghidoni, A., Rebay, S.: Time Integration in the discontinuous Galerkin Code MIGALE—steady problems. In: Kroll, N., Hirsch, C., Bassi, F., Johnston, C., Hillewaert, K. (eds.) IDIHOM: Industrialization of High-Order Methods—A Top-Down Approach. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 128, pp. 179–204. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-12886-3_10

    Chapter  Google Scholar 

  • Bassi, F., Botti, L., Colombo, A., Crivellini, A., Ghidoni, A., Massa, F.: On the development of an implicit high-order Discontinuous Galerkin method for DNS and implicit LES of turbulent flows. Eur. J. Mech. B/Fluids 55, 367–379 (2016). https://doi.org/10.1016/j.euromechflu.2015.08.010

    Article  MATH  MathSciNet  Google Scholar 

  • Bassi, F., Botti, L., Colombo, A., Crivellini, A., Ghidoni, A., Nigro, A., Rebay, S.: Time Integration in the discontinuous Galerkin code MIGALE—unsteady problems. In: N. Kroll, C. Hirsch, F. Bassi, C. Johnston, K. Hillewaert (eds.) IDIHOM: industrialization of high-order methods—a top-down approach. Notes on Numerical Fluid Mechanics and Multidisciplinary Design, vol. 128, pp. 205–230. Springer International Publishing, Cham (2015). https://doi.org/10.1007/978-3-319-12886-3_11

    Chapter  Google Scholar 

  • Bassi, F., Botti, L., Colombo, A., Di Pietro, D.A., Tesini, P.: On the flexibility of agglomeration based physical space discontinuous Galerkin discretizations. J. Comput. Phys. 231(1), 45–65 (2012). https://doi.org/10.1016/j.jcp.2011.08.018

    Article  MATH  MathSciNet  Google Scholar 

  • Bassi, F., Botti, L., Colombo, A., Ghidoni, A., Massa, F.: Linearly implicit Rosenbrock-type Runge–Kutta schemes applied to the discontinuous Galerkin solution of compressible and incompressible unsteady flows. Comput. Fluids 118, 305–320 (2015). https://doi.org/10.1016/j.compfluid.2015.06.007

    Article  MATH  MathSciNet  Google Scholar 

  • Bassi, F., Colombo, A., Crivellini, A., Fidkowski, K., Franciolini, M., Ghidoni, A., Noventa, G.: An entropy-adjoint \(p\)-adaptive discontinuous Galerkin method for the under-resolved simulation of turbulent flows. AIAA Aviation 2019 Forum. (2019). https://doi.org/10.2514/6.2019-3418

  • Bassi, F., Colombo, A., Crivellini, A., Fidkowski, K., Franciolini, M., Ghidoni, A., Noventa, G.: Entropy-adjoint \(p\)-adaptive discontinuous Galerkin method for the under-resolved simulation of turbulent flows. AIAA J. (2020). https://doi.org/10.2514/1.J058847

  • Bassi, F., Colombo, A., Crivellini, A., Franciolini, M., Ghidoni, A., Manzinali, G., Noventa, G.: Under-resolved simulation of turbulent flows using a \(p\)-adaptive discontinuous Galerkin method. In: Örlü R., Talamelli A., Peinke J., Oberlack M. (eds) Progress in Turbulence VIII. iTi 2018. Springer Proceedings in Physics, vol 226, pp. 157–162. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-22196-6_25

  • Bassi, F., Crivellini, A., Di Pietro, D.A., Rebay, S.: An artificial compressibility flux for the discontinuous Galerkin solution of the incompressible Navier–Stokes equations. J. Comput. Phys. 218, 794–815 (2006). https://doi.org/10.1016/j.jcp.2006.03.006

    Article  MATH  MathSciNet  Google Scholar 

  • Bassi, F., Rebay, S., Mariotti, G., Pedinotti, S., Savini, M.: A high-order accurate discontinuous finite element method for inviscid and viscous turbomachinery flows. In: R. Decuypere, G. Dibelius (eds.) Proceedings of the 2nd European Conference on Turbomachinery Fluid Dynamics and Thermodynamics, pp. 99–108. Technologisch Instituut, Antwerpen, Belgium (1997)

  • Botti, L., Colombo, A., Bassi, F.: h-multigrid agglomeration based solution strategies for discontinuous Galerkin discretizations of incompressible flow problems. J. Comput. Phys. 347, 382–415 (2017). https://doi.org/10.1016/j.jcp.2017.07.002

    Article  MATH  MathSciNet  Google Scholar 

  • Botti, L., Colombo, A., Crivellini, A., Franciolini, M.: \(\{\)h-p-hp \(\}\)-Multilevel discontinuous Galerkin solution strategies for elliptic operators. Int. J. Comput. Fluid Dyn. 362–370 (2019). https://doi.org/10.1080/10618562.2019.1688306

  • Breuer, M.: Large eddy simulation of the subcritical flow past a circular cylinder: numerical and modeling aspects. Int. J. Numer. Methods Fluids 28(9), 1281–1302 (1998)

    Article  Google Scholar 

  • Brezzi, F., Manzini, G., Marini, D., Pietra, P., Russo, A.: Discontinuous Galerkin approximations for elliptic problems. Numer. Methods Partial Differ. Equ. 16, 365–378 (2000)

    Article  MathSciNet  Google Scholar 

  • Castro, I.P., Epik, E.: Boundary layer development after a separated region. J. Fluid Mech. 374, 91–116 (1998). https://doi.org/10.1017/S0022112098002420

    Article  MATH  MathSciNet  Google Scholar 

  • Colombo, A., Manzinali, G., Ghidoni, A., Noventa, G., Franciolini, M., Crivellini, A., Bassi, F.: A \(p\)-adaptive implicit discontinuous Galerkin method for the under-resolved simulation of compressible turbulent flows. In: Proceedings of the 6th European Conference on Computational Mechanics: Solids, Structures and Coupled Problems, ECCM 2018 and 7th European Conference on Computational Fluid Dynamics, ECFD 2018, pp. 4159–4170 (2020)

  • Coupland, J., Brierley, D.: Transition in turbomachinery flows. final report. BRITE/EURAM Project AERO-CT92-0050. Measurements available at the ERCOFTAC site (1996)

  • Crivellini, A., Bassi, F.: An implicit matrix-free discontinuous Galerkin solver for viscous and turbulent aerodynamic simulations. Comput. Fluids 50(1), 81–93 (2011). https://doi.org/10.1016/j.compfluid.2011.06.020

    Article  MATH  MathSciNet  Google Scholar 

  • Crivellini, A., D’Alessandro, V., Bassi, F.: Assessment of a high-order discontinuous Galerkin method for incompressible three-dimensional Navier-Stokes equations: Benchmark results for the flow past a sphere up to \(\mathrm{Re}=500\). Comput. Fluids 86, 442–458 (2013). https://doi.org/10.1016/j.compfluid.2013.07.027

    Article  MATH  Google Scholar 

  • de la Llave Plata, M., Couaillier, V., le Pape, M.C.: On the use of a high-order discontinuous Galerkin method for DNS and LES of wall-bounded turbulence. Comput. Fluids 176, 320–337 (2018). https://doi.org/10.1016/j.compfluid.2017.05.013

    Article  MATH  MathSciNet  Google Scholar 

  • de Wiart, C., Hillewaert, K., Bricteux, L., Winckelmans, G.: Implicit LES of free and wall-bounded turbulent flows based on the discontinuous Galerkin/symmetric interior penalty method. Int. J. Numer. Methods Fluids 78(6), 335–354 (2015). https://doi.org/10.1002/fld.4021

    Article  MathSciNet  Google Scholar 

  • Diosady, L.T., Darmofal, D.L.: Preconditioning methods for discontinuous Galerkin solutions of the Navier–Stokes equations. J. Comput. Phys. 228(11), 3917–3935 (2009)

    Article  MathSciNet  Google Scholar 

  • Franciolini, M., Botti, L., Colombo, A., Crivellini, A.: p-Multigrid matrix-free discontinuous Galerkin solution strategies for the under-resolved simulation of incompressible turbulent flows. Comput. Fluids, 206, art. no. 104558 (2020). https://doi.org/10.1016/j.compfluid.2020.104558

  • Franciolini, M., Crivellini, A., Nigro, A.: On the efficiency of a matrix-free linearly implicit time integration strategy for high-order Discontinuous Galerkin solutions of incompressible turbulent flows. Comput. Fluids 159, 276–294 (2017). https://doi.org/10.1016/j.compfluid.2017.10.008

    Article  MATH  MathSciNet  Google Scholar 

  • Franciolini, M., Fidkowski, L., Crivellini, A.: Efficient discontinuous Galerkin implementations and preconditioners for implicit unsteady compressible flow simulations. Comput. Fluids 203, 104542 (2020). https://doi.org/10.1016/j.compfluid.2020.104542

    Article  MATH  MathSciNet  Google Scholar 

  • Garai, A., Diosady, L., Murman, S., Madavan, N.: Scale-resolving simulations of bypass transition in a high-pressure turbine cascade using a spectral element discontinuous Galerkin method. J. Turbomach. 140(3) (2018). https://doi.org/10.1115/1.4038403

  • Gassner, G., Staudenmaier, M., Hindenlang, F., Atak, M., Munz, C.D.: A space-time adaptive discontinuous Galerkin scheme. Comput. Fluids 117, 247–261 (2015). https://doi.org/10.1016/j.compfluid.2015.05.002

    Article  MATH  MathSciNet  Google Scholar 

  • Helenbrook, B., Mavriplis, D., Atkins, H.: Analysis of p-multigrid for continuous and discontinuous finite element discretizations. In: 16th AIAA Computational Fluid Dynamics Conference (2003). https://doi.org/10.2514/6.2003-3989

  • Hesthaven, J.S., Warburton, T.: Nodal Discontinuous Galerkin Methods. Springer, Berlin (2008)

    Book  Google Scholar 

  • Hillier, R., Cherry, N.: The effects of stream turbulence on separation bubbles. J. Wind Eng. Ind. Aerodyn. 8(1), 49–58 (1981). https://doi.org/10.1016/0167-6105(81)90007-6

    Article  Google Scholar 

  • 4th International workshop on High-Order CFD Methods. https://how4.cenaero.be/news

  • Karypis, G., Kumar, V.: METIS: unstructured graph partitioning and sparse matrix ordering system, version 5.0. Tech. rep (2009). http://www.cs.umn.edu/~metis

  • Knoll, D., Keyes, D.: Jacobian-free Newton–Krylov methods: a survey of approaches and applications. J. Comput. Phys. 193(2), 357–397 (2004)

    Article  MathSciNet  Google Scholar 

  • Kravchenko, A.G., Moin, P.: Numerical studies of flow over a circular cylinder at Red = 3900. Phys. Fluids 12(2), 403–417 (2000). https://doi.org/10.1063/1.870318

    Article  MATH  Google Scholar 

  • Krivodonova, L., Xin, J., Remacle, J.F., Chevaugeon, N., Flaherty, J.E.: Shock detection and limiting with discontinuous Galerkin methods for hyperbolic conservation laws. Appl. Numer. Math. 48(3–4), 323–338 (2004)

    Article  MathSciNet  Google Scholar 

  • Lamballais, E., Silvestrini, J., Laizet, S.: Direct numerical simulation of flow separation behind a rounded leading edge: study of curvature effects. Int. J. Heat Fluid Flow 31(3), 295–306 (2010). https://doi.org/10.1016/j.ijheatfluidflow.2009.12.007

    Article  Google Scholar 

  • Lang, J., Verwer, J.: ROS3P-An accurate third-order Rosenbrock solver designed for parabolic problems. BIT Numer. Math. 41(4), 731–738 (2001). https://doi.org/10.1023/A:1021900219772

    Article  MATH  MathSciNet  Google Scholar 

  • Langari, M., Yang, Z.: Numerical study of the primary instability in a separated boundary layer transition under elevated free-stream turbulence. Phys. Fluids 25(7), 074106 (2013). https://doi.org/10.1063/1.4816291

    Article  Google Scholar 

  • Lysenko, D.A., Ertesvåg, I.S., Rian, K.E.: Large-Eddy Simulation of the flow over a circular cylinder at Reynolds number 3900 using the OpenFOAM toolbox. Flow Turbul. Combust. 89(4), 491–518 (2012). https://doi.org/10.1007/s10494-012-9405-0

    Article  Google Scholar 

  • Ma, X., Karamanos, G.S., Karniadakis, G.: Dynamics and low-dimensionality of a turbulent near wake. J. Fluid Mech. 410, 29–65 (2000). https://doi.org/10.1017/S0022112099007934

    Article  MATH  MathSciNet  Google Scholar 

  • Massa, F., Noventa, G., Lorini, M., Bassi, F., Ghidoni, A.: High-order linearly implicit two-step peer schemes for the discontinuous Galerkin solution of the incompressible Navier–Stokes equations. Comput. Fluids 162, 55–71 (2018). https://doi.org/10.1016/j.compfluid.2017.12.003

    Article  MATH  MathSciNet  Google Scholar 

  • Mavriplis, D.J.: An assessment of linear versus nonlinear multigrid methods for unstructured mesh solvers. J. Comput. Phys. 175(1), 302–325 (2002). https://doi.org/10.1006/jcph.2001.6948

    Article  MATH  MathSciNet  Google Scholar 

  • Moura, R., Mengaldo, G., Peiró, J., Sherwin, S.: On the eddy-resolving capability of high-order discontinuous Galerkin approaches to implicit LES / under-resolved DNS of Euler turbulence. J. Comput. Phys. 330, 615–623 (2017). https://doi.org/10.1016/j.jcp.2016.10.056

    Article  MATH  MathSciNet  Google Scholar 

  • Moura, R., Sherwin, S., Peiró, J.: Linear dispersion-diffusion analysis and its application to under-resolved turbulence simulations using discontinuous Galerkin spectral/hp methods. J. Comput. Phys. 298, 695–710 (2015)

    Article  MathSciNet  Google Scholar 

  • Naddei, F., De La Llave Plata, M., Couaillier, V.: A comparison of refinement indicators for \(p\)-adaptive discontinuous Galerkin methods for the Euler and Navier–Stokes equations. In: 2018 AIAA Aerospace Sciences Meeting (2018). https://doi.org/10.2514/6.2018-0368

  • Naddei, F., de la Llave Plata, M., Couaillier, V., Coquel, F.: A comparison of refinement indicators for \(p\)-adaptive simulations of steady and unsteady flows using discontinuous Galerkin methods. J. Comput. Phys. 376, 508–533 (2019). https://doi.org/10.1016/j.jcp.2018.09.045

    Article  MATH  Google Scholar 

  • Nakamura, Y., Ozono, S.: The effects of turbulence on a separated and reattaching flow. J. Fluid Mech. 178, 477–490 (1987). https://doi.org/10.1017/S0022112087001320

    Article  Google Scholar 

  • Norberg, C.: Flow around a circular cylinder: aspects of fluctuating lift. J. Fluids Struct. 15(3), 459–469 (2001)

    Article  Google Scholar 

  • Ong, L., Wallace, J.: The velocity field of the turbulent very near wake of a circular cylinder. Exp. Fluids 20(6), 441–453 (1996). https://doi.org/10.1007/BF00189383

    Article  Google Scholar 

  • Ouvrard, H., Koobus, B., Dervieux, A., Salvetti, M.: Classical and variational multiscale LES of the flow around a circular cylinder on unstructured grids. Comput. Fluids 39(7), 1083–1094 (2010). https://doi.org/10.1016/j.compfluid.2010.01.017

    Article  MATH  Google Scholar 

  • Palikaras, A., Yakinthos, K., Goulas, A.: The effect of negative shear on the transitional separated flow around a semi-circular leading edge. Int. J. Heat Fluid Flow 24(3), 421–430 (2003)

    Article  Google Scholar 

  • Park, J., Witherden, F., Vincent, P.: High-order implicit large-eddy simulations of flow over a NACA0021 aerofoil. AIAA J. 55(7), 2186–2197 (2017). https://doi.org/10.2514/1.J055304

    Article  Google Scholar 

  • Parnaudeau, P., Carlier, J., Heitz, D., Lamballais, E.: Experimental and numerical studies of the flow over a circular cylinder at Reynolds number 3900. Phys. Fluids 20(8), 085101 (2008). https://doi.org/10.1063/1.2957018

    Article  MATH  Google Scholar 

  • Pernice, M., Walker, H.: NITSOL: a Newton iterative solver for nonlinear systems. SIAM J. Sci. Comput. 19(1), 302–318 (1998)

    Article  MathSciNet  Google Scholar 

  • Persson, P.O., Peraire, J.: Sub-cell shock capturing for discontinuous Galerkin methods. In: 44th AIAA Aerospace Sciences Meeting and Exhibit. (2006). https://doi.org/10.2514/6.2006-112

  • Rang, J., Angermann, L.: New Rosenbrock methods of order 3 for PDAEs of index 2. In: Proceedings of Equadiff-11 2005, pp. 385–394. Comenius University Press (Bratislava) (2007)

  • Shahbazi, K., Mavriplis, D.J., Burgess, N.K.: Multigrid algorithms for high-order discontinuous Galerkin discretizations of the compressible Navier–Stokes equations. J. Comput. Phys. 228(21), 7917–7940 (2009)

    Article  MathSciNet  Google Scholar 

  • Son, J.S., Hanratty, T.J.: Velocity gradients at the wall for flow around a cylinder at Reynolds numbers from \(5 \times 10^3\) to 105. J. Fluid Mech. 35(2), 353–368 (1969). https://doi.org/10.1017/S0022112069001157

    Article  Google Scholar 

  • Spalart, P.R.: Direct simulation of a turbulent boundary layer up to \(\mathrm{Re}_\theta = 1410\). J. Fluid Mech. 187, 61–98 (1988). https://doi.org/10.1017/S0022112088000345

    Article  MATH  Google Scholar 

  • Tesini, P.: An h-Multigrid Approach for High-Order discontinuous Galerkin Methods. Ph.D. thesis, Università degli Studi di Bergamo (2008)

  • Tugnoli, M., Abbà, A., Bonaventura, L., Restelli, M.: A locally \(p\)-adaptive approach for Large Eddy simulation of compressible flows in a DG framework. J. Comput. Phys. 349, 33–58 (2017). https://doi.org/10.1016/j.jcp.2017.08.007

    Article  MATH  Google Scholar 

  • Uranga, A., Persson, P.O., Drela, M., Peraire, J.: Implicit large eddy simulation of transition to turbulence at low Reynolds numbers using a discontinuous Galerkin method. Int. J. Numer. Methods Eng. 87(1–5), 232–261 (2011). https://doi.org/10.1002/nme.3036

    Article  MATH  MathSciNet  Google Scholar 

  • Wissink, J., Rodi, W.: Numerical study of the near wake of a circular cylinder. Int. J. Heat Fluid Flow 29, 1060–1070 (2008). https://doi.org/10.1016/j.ijheatfluidflow.2008.04.001

    Article  Google Scholar 

  • Yang, Z., Voke, P.R.: Large-Eddy simulation of boundary-layer separation and transition at a change of surface curvature. J. Fluid Mech. 439, 305–333 (2001). https://doi.org/10.1017/S0022112001004633

    Article  MATH  Google Scholar 

Download references

Acknowledgements

We acknowledge CINECA for the availability of high performance computing resources under the Italian Super-Computing Resource Allocation (ISCRA) initiative.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Colombo.

Ethics declarations

Conflict of Interest

The authors declare that they have no conflict of interest.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bassi, F., Botti, L., Colombo, A. et al. A p-adaptive Matrix-Free Discontinuous Galerkin Method for the Implicit LES of Incompressible Transitional Flows. Flow Turbulence Combust 105, 437–470 (2020). https://doi.org/10.1007/s10494-020-00178-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10494-020-00178-2

Keywords

Navigation