Skip to main content

Advertisement

Log in

Mitral Valve Posterior Leaflet Reconstruction Using Extracellular Matrix: In Vitro Evaluation

  • Original Article
  • Published:
Cardiovascular Engineering and Technology Aims and scope Submit manuscript

Abstract

Purpose

To investigate the anatomical and functional effects of complete surgical reconstruction of the posterior mitral leaflet and associated chordae tendineae with a patch made of 2-ply small intestinal submucosal extracellular matrix in vitro.

Methods

Seven explanted mitral valves with intact subvalvular apparatus from 80-kg pigs were evaluated in a left heart simulator and served as their own controls. After testing the native valve, the mitral posterior leaflet and associated chordae tendineae were excised and reconstructed by using the 2-ply small intestinal submucosa extracellular matrix patch. The characterization of the reconstruction was based on geometric data from digital images, papillary muscle force, annular tethering force and leaflet pressure force.

Results

The reconstructed valves were fully functional without regurgitation, tearing or rupture during incrementally increased pressure from 0 to 120 mmHg. The leaflet areas were preserved after reconstruction, with a normal configuration of the coaptation line. However, the coaptation midpoint moved posteriorly after reconstruction (A2: 15.8 ± 1.4 vs. 18.9 ± 1.5 mm, p = 0.002, diff = 3.1 mm, 95% CI 1.3 to 4.8 mm). The anterior papillary muscle force increased significantly (3.9 vs. 4.6 N, p = 0.029, diff = 0.7 N, 95% CI 0.1 to 1.4 N at 120mmHg) after reconstruction. The posterior papillary muscle force, leaflet pressure force and annular pressure force did not change significantly.

Conclusions

In this in vitro model, mitral valve anatomy and function were comparable between the native mitral valve and our new surgical technique for complete reconstruction of the posterior mitral leaflet and associated chordae tendineae. These promising results warrant further in vivo evaluation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6

Similar content being viewed by others

References

  1. Falk, V., H. Baumgartner, J. J. Bax, et al. 2017 ESC/EACTS Guidelines for the management of valvular heart disease. Eur. J. Cardiothorac. Surg. 52:616–664, 2017. https://doi.org/10.1093/ejcts/ezx324.

    Article  Google Scholar 

  2. Mick, S. L., S. Keshavamurthy, and A. M. Gillinov. Mitral valve repair versus replacement. Ann. Cardiothorac. Surg. 4:230–237, 2015. https://doi.org/10.3978/j.issn.2225-319X.2015.03.01.

    Article  Google Scholar 

  3. McGoon, D. Repair of mitral insufficiency due to ruptured chordae tendineae. J. Thorac. Cardiovasc. Surg. 39:357–362, 1960.

    Article  Google Scholar 

  4. Chitwood, Jr, W. R. Haircut mitral valve repair: posterior leaflet-plasty. Ann. Cardiothorac. Surg. 4:387–392, 2015. https://doi.org/10.3978/j.issn.2225-319X.2015.05.07.

    Article  Google Scholar 

  5. Feindel, C. M., Z. Tufail, T. E. David, J. Ivanov, and S. Armstrong. Mitral valve surgery in patients with extensive calcification of the mitral annulus. J. Thorac. Cardiovasc. Surg. 126:777–782, 2003.

    Article  Google Scholar 

  6. Uchimuro, T., T. Fukui, A. Shimizu, and S. Takanashi. Mitral valve surgery in patients with severe mitral annular calcification. Ann. Thorac. Surg. 101:889–895, 2016. https://doi.org/10.1016/j.athoracsur.2015.08.071.

    Article  Google Scholar 

  7. Shomura, Y., Y. Okada, M. Nasu, et al. Late results of mitral valve repair with glutaraldehyde-treated autologous pericardium. Ann. Thorac. Surg. 95:2000–2005, 2013. https://doi.org/10.1016/j.athoracsur.2013.02.024.

    Article  Google Scholar 

  8. Tjornild, M. J., L. Carlson Hanse, S. N. Skov, S. L. Nielsen, J. M. Hasenkam, and D. M. Ropcke. Entire mitral valve reconstruction using porcine extracellular matrix: static in vitro evaluation. Eur. J. Cardiothorac. Surg. 55:1095–1103, 2019. https://doi.org/10.1093/ejcts/ezy416.

    Article  Google Scholar 

  9. Tjornild, M. J., S. N. Skov, K. B. Poulsen, et al. Mitral valve posterior leaflet reconstruction using extracellular matrix: an acute porcine study. Eur. J. Cardiothorac. Surg. 54:832–840, 2018. https://doi.org/10.1093/ejcts/ezy152.

    Article  Google Scholar 

  10. Myers, P. O., M. Cikirikcioglu, and A. Kalangos. Biodegradable materials for surgical management of infective endocarditis: new solution or a dead end street? BMC Surg. 2014. https://doi.org/10.1186/1471-2482-14-48.

    Article  Google Scholar 

  11. Lam, M. T., and J. C. Wu. Biomaterial applications in cardiovascular tissue repair and regeneration. Expert Rev. Cardiovasc. Ther. 10:1039–1049, 2012. https://doi.org/10.1586/erc.12.99.

    Article  Google Scholar 

  12. Mosala Nezhad, Z., A. Poncelet, L. de Kerchove, P. Gianello, C. Fervaille, and G. El Khoury. Small intestinal submucosa extracellular matrix (CorMatrix(R)) in cardiovascular surgery: a systematic review. Interact. Cardiovasc. Thorac. Surg. 22:839–850, 2016. https://doi.org/10.1093/icvts/ivw020.

    Article  Google Scholar 

  13. Ropcke, D. M., M. O. Jensen, H. Jensen, T. Hejslet, and S. L. Nielsen. Papillary muscle force distribution after total tricuspid reconstruction using porcine extracellular matrix: in-vitro valve characterization. J. Heart Valve Dis. 23:788–794, 2014.

    Google Scholar 

  14. Askov, J. B., J. L. Honge, M. O. Jensen, H. Nygaard, J. M. Hasenkam, and S. L. Nielsen. Significance of force transfer in mitral valve-left ventricular interaction: in vivo assessment. Cardiovasc. Eng. Technol. 2:196–202, 2013.

    Article  Google Scholar 

  15. Ho, S. Y. Anatomy of the mitral valve. Heart. 88(Suppl 4):iv5–iv10, 2002. https://doi.org/10.1136/heart.88.suppl_4.iv5.

    Article  Google Scholar 

  16. Jimenez, J. H., D. D. Soerensen, Z. He, S. He, and A. P. Yoganathan. Effects of a saddle shaped annulus on mitral valve function and chordal force distribution: an in vitro study. Ann. Biomed. Eng. 31:1171–1181, 2003. https://doi.org/10.1114/1.1616929.

    Article  Google Scholar 

  17. Jensen, M. O., H. Jensen, R. A. Levine, et al. Saddle-shaped mitral valve annuloplasty rings improve leaflet coaptation geometry. J. Thorac. Cardiovasc. Surg. 142:697–703, 2011. https://doi.org/10.1016/j.jtcvs.2011.01.022.

    Article  Google Scholar 

  18. Raut, M., A. Maheshwari, and B. Swain. Awareness of ‘systolic anterior motion’ in different conditions. Clin. Med. Insights Cardiol. 2018. https://doi.org/10.1177/1179546817751921.

    Article  Google Scholar 

  19. Askov, J. B., J. L. Honge, M. O. Jensen, H. Nygaard, J. M. Hasenkam, and S. L. Nielsen. Significance of force transfer in mitral valve-left ventricular interaction: in vivo assessment. J. Thorac. Cardiovasc. Surg. 145:1635–1641, 2013. https://doi.org/10.1016/j.jtcvs.2012.07.062.

    Article  Google Scholar 

  20. Siefert, A. W., J. H. Jimenez, K. J. Koomalsingh, et al. Dynamic assessment of mitral annular force profile in an ovine model. Ann. Thorac. Surg. 94:59–65, 2012. https://doi.org/10.1016/j.athoracsur.2012.02.074.

    Article  Google Scholar 

  21. Tjornild, M. J., S. N. Skov, D. M. Ropcke, et al. Mitral annuloplasty ring with selective flexibility for septal-lateral contraction and remodelling properties. Interact. Cardiovasc. Thorac. Surg. 28:65–70, 2019. https://doi.org/10.1093/icvts/ivy194.

    Article  Google Scholar 

Download references

Acknowledgments

This work was supported by the Lundbeck Foundation [Grant Number R184-2014-2478], the Danish Heart Foundation [Grant Numbers 16-R107-A6588-22041 and 16-R107-A6588-22042], the Graduate School of Health, Aarhus University [Grant Number 18931909], the Helga and Peter Korning Foundation and the Raimond and Dagmar-Ringgaard Bohn Foundation. The 2-ply small intestinal submucosal extracellular matrix material was donated by CorMatrix®.

Conflict of interest

Author Marcell J. Tjørnild, Author Søren W. Sørensen, Author Lisa Carlson Hanse, Author Søren N. Skov, Author Diana M. Røpcke, Author Sten L. Nielsen and Author J. Michael Hasenkam all declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcell J. Tjørnild.

Additional information

Associate Editor Jane Grande-Allen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tjørnild, M.J., Sørensen, S.W., Carlson Hanse, L. et al. Mitral Valve Posterior Leaflet Reconstruction Using Extracellular Matrix: In Vitro Evaluation. Cardiovasc Eng Tech 11, 405–415 (2020). https://doi.org/10.1007/s13239-020-00472-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s13239-020-00472-0

Keywords

Navigation