Skip to main content
Log in

Landau mean-field model with the cubic term for the \(\upalpha \)\(\upbeta \) transition in quartz

  • Published:
Bulletin of Materials Science Aims and scope Submit manuscript

Abstract

Thermodynamic quantities are calculated as a function of temperature by using Landau mean-field model for the \(\upalpha \)\(\upbeta \) transition in quartz. By expanding the Gibbs free energy in terms of the order parameter (Q) with the cubic term (\(Q^{3}),\) the temperature dependence of the relevant thermodynamic quantities are predicted using the heat capacity (\(C_{\mathrm {P}})\), which is fitted to the experimental data from the literature for the \(\upalpha \)\(\upbeta \) transition in quartz. Our results indicate that the Landau mean-field model is adequate to describe the first-order \(\upalpha \)\(\upbeta \) transition in quartz.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Dolino G, Bachheimer J P and Zeyen C M E 1983 Solid State Commun. 45 295

    Article  CAS  Google Scholar 

  2. Dolino G, Bachheimer J P, Berge B and Zeyen C M E 1984 J. Phys. 45 361 (Paris)

    Article  CAS  Google Scholar 

  3. Berge B, Dolino G, Vallade M, Boissier M and Vacher R 1984 J. Phys. 45 715

    Article  CAS  Google Scholar 

  4. Matsuura M, Yao H, Gouhara K, Hatta I and Kato N 1985 J. Phys. Soc. Jpn. 54 625

    Article  CAS  Google Scholar 

  5. Yao H and Hatta I 1995 Thermochim. Acta 266 301

    Article  CAS  Google Scholar 

  6. Banda E J K B, Craven R A, Parks R D, Horn P M and Blume M 1975 Solid State Commun. 17 11

    Article  CAS  Google Scholar 

  7. Ishibashi S, Abe K, Suzuki M, Sasaki Y and Shigenari T 1996 Physica B 219&220 593

    Article  CAS  Google Scholar 

  8. Carpenter M A, Salje E K H, Barber A G, Wruck B, Dove M T and Knight K S 1998 Am. Min. 83 2

    Article  Google Scholar 

  9. Gregoryanz E, Hemley R J, Mao H K and Gillet P 2000 Phys. Rev. Lett. 84 3117

    Article  CAS  Google Scholar 

  10. Ohno I, Harada K and Yoshitomi C 2006 Phys. Chem. Min. 33 1

    Article  CAS  Google Scholar 

  11. Lider M C and Yurtseven H 2015 Int. J. Thermophys. 36 1585

    Article  CAS  Google Scholar 

  12. Lider M C and Yurtseven H 2018 J. Mol. Struct. 1159 1

    Article  CAS  Google Scholar 

  13. Yurtseven H and Ateş S 2019 J. Mol. Struct. 1179 421

    Article  CAS  Google Scholar 

  14. Nikitin A, Markova G V, Balagurov A M, Vasin R N and Alekseeva O V 2007 Crystallogr. Rep. 52 428

    Article  CAS  Google Scholar 

  15. Salje E K H, Ridgwell A, Güttler B, Wruck B, Dove M T and Dolino G 1992 J. Phys.: Condens. Matter 4 571

    Article  CAS  Google Scholar 

  16. Gibhardt H, Eckold G and Mitlacher H 1997 Physica B 234–236 149

    Article  Google Scholar 

  17. Bethke J and Eckold G 1992 Physica B 180–181 323

    Article  Google Scholar 

  18. Tsuneyuki S, Aoki H, Tsukada M and Matsui Y 1990 Phys. Rev. Lett. 64 776

    Article  CAS  Google Scholar 

  19. Tse J S and Klug D D 1991 Phys. Rev. Lett. 67 3559

    Article  CAS  Google Scholar 

  20. Demiralp E, Cagin T and Goddard III W A 1999 Phys. Rev. Lett. 82 1708

    Article  CAS  Google Scholar 

  21. Müser M H and Binder K 2001 Phys. Chem. Min. 28 746

    Article  Google Scholar 

  22. Aslanian T A and Levanyuk A P 1979 Solid State Commun. 31 547

    Article  Google Scholar 

  23. Dolino G 1990 Phase Trans. 21 59

    Article  CAS  Google Scholar 

  24. Dolino G and Bastie P 1995 Key Eng. Mater. 101–102 285

    Article  Google Scholar 

  25. Tucker M G, Dove M T and Keen D A 2000 J. Phys.: Condens. Matter 12 L723

    Article  CAS  Google Scholar 

  26. Yurtseven H, Ipekoglu U and Ates S 2017 Mod. Phys. Lett. B 31 1750092

    Article  CAS  Google Scholar 

  27. Tari O and Yurtseven H 2019 Mater. Chem. Phys. 228 118

    Article  CAS  Google Scholar 

  28. Levanyuk A P and Sannikov D G 1976 Sov. Phys. Solid State 18 1122

    Google Scholar 

  29. Höchli U T and Scott J F 1971 Phys. Rev. Lett. 26 1627

    Article  Google Scholar 

  30. Tezuka Y, Shin S and Ishigame M 1991 Phys. Rev. Lett. 18 2356

    Article  Google Scholar 

  31. Hemingway B S 1987 Am. Min. 72 273

    CAS  Google Scholar 

  32. Kihara K 1990 Eur. J. Min. 2 63

    Article  CAS  Google Scholar 

  33. Levanyuk A P, Minyukov S A and Vallade M 1993 J. Phys.: Condens. Matter 5 4419

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to H Yurtseven.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ateş, S., Yurtseven, H. Landau mean-field model with the cubic term for the \(\upalpha \)\(\upbeta \) transition in quartz. Bull Mater Sci 43, 156 (2020). https://doi.org/10.1007/s12034-020-02127-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s12034-020-02127-1

Keywords

Navigation